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Abstract. We present an unconditionally stable finite difference method for
solving the viscous Cahn–Hilliard equation. We prove the unconditional sta-

bility of the proposed scheme by using the decrease of a discrete functional.

We present numerical results that validate the convergence and unconditional
stability properties of the method. Further, we present numerical experiments

that highlight the different temporal evolutions of the Cahn–Hilliard and vis-

cous Cahn–Hilliard equations.

1. Introduction. We consider a finite difference scheme for the viscous Cahn–
Hilliard (vCH) equation

φt(x, t) = ∆µ(x, t), (1)

µ(x, t) = F ′(φ(x, t))− ε2∆φ(x, t) + νφt(x, t), (2)

where Ω ⊂ Rd (d = 1, 2, 3) is a domain. The quantity φ(x, t) is defined as the
difference between the concentrations of the two mixture components. F (φ) =
(φ2 − 1)2/4 is the Helmholtz free energy, ε is the gradient energy coefficient related
to the interfacial energy, and ν is the viscosity parameter. The no-flux boundary
conditions are

n · ∇φ = n · ∇µ = 0 on ∂Ω, (3)

where n is the unit normal vector to ∂Ω. Note that if ν = 0, the vCH equation
becomes the Cahn–Hilliard (CH) equation.

The CH equation is a diffuse interface model for describing the spinodal decom-
position in binary alloys [3], and the vCH equation is considered as a phenomenolog-
ical continuum model for phase separation coupling with a slowly relaxing variable
[2, 29]. The sharp interface limit of the CH equation is the Mullins–Sekerka model
[11, 30]. The viscosity term νφt can be interpreted as describing the influences of
internal microforces [19]. The mathematical model for the vCH has been derived
in [28]. Global existence, solvability, uniqueness, and long-time behavior of the
vCH equation have been studied analytically in [4, 9, 10, 13, 17, 26]. Further, the
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metastable and coarsening dynamics of interfaces for the vCH equation is studied
in [32, 33].

The CH equation has been intensively studied using various numerical methods
[5, 6, 12, 15, 16, 18, 21, 22, 23, 24, 25, 35, 37]. However, only a small number of au-
thors studied the vCH equation numerically [1, 8, 27, 33]. The main purpose of this
paper is to apply the nonlinear splitting method [14, 15] to the vCH equation and
prove its unconditional stability. Further, we present numerical experiments that
highlight the different dynamics of the CH and vCH equations using the proposed
scheme.

This paper is organized as follows. In Section 2, we present the proposed nu-
merical scheme and prove its mass conservation and unconditionally stability. In
Section 3, a brief numerical solution procedure is given to condense the discussion.
Numerical results are described in Section 4 and conclusions are stated in Section
5.

2. Numerical analysis. We present a finite difference scheme for the vCH equa-
tion and prove the mass conservation and unconditional stability of the numerical
scheme. We discretize the vCH equation in a one-dimensional space Ω = (a, b).
Two and three-dimensional discretizations are analogously defined. Let N be a
positive even integer, h = (b − a)/N be the uniform mesh size, and Ωh = {xi =
(i − 0.5)h, 1 ≤ i ≤ N} be the set of cell-centers. Let φni and µni be the approxi-
mations of φ(xi, n∆t) and µ(xi, n∆t), respectively, where ∆t is the time step. The
boundary condition is implemented as

∇hφn1
2

= ∇hφnN+ 1
2

= ∇hµn1
2

= ∇hµnN+ 1
2

= 0, (4)

where the discrete differentiation operator is ∇hφni+ 1
2

= (φni+1 − φni )/h. Then, we

define a discrete Laplacian operator by ∆hφi = (∇hφni+ 1
2

−∇hφni− 1
2

)/h and discrete

l2 inner product by

〈φ,ψ〉h = h

N∑
i=1

φiψi, and (∇hφ,∇hψ)h = h

N∑
i=0

∇hφi+ 1
2
∇hψi+ 1

2
, (5)

where φ = (φ1, φ2, · · · , φN ) and ψ = (ψ1, ψ2, · · · , ψN ). Further, we define the dis-
crete l2-norm as ‖φ‖22 = 〈φ,φ〉h and the maximum norm as ‖φ‖∞ = max1≤i≤N |φi|.
By applying a nonlinearly stabilized splitting scheme [14, 15] to vCH, we propose
the following scheme:

φn+1
i − φni

∆t
= ∆hµ

n+1
i (6)

µn+1
i =

(
φn+1
i

)3 − φni − ε2∆hφ
n+1
i + ν

φn+1
i − φni

∆t
, (7)

for i = 1, · · · , N . Using boundary conditions (4), we have a discrete summation by
parts 〈∆hφ,ψ〉h = 〈φ,∆hψ〉h = −(∇hφ,∇hψ)h, and the discrete mass conserva-
tion is proved by〈

φn+1,1
〉
h

= 〈φn,1〉h + ∆t
〈
∆hµ

n+1,1
〉
h

= 〈φn,1〉h −∆t
(
∇hµn+1,∇h1

)
h

= 〈φn,1〉h , (8)

where 1 = (1, 1, · · · , 1). Next, we prove that schemes (6) and (7) are unconditionally
stable. For the case of the CH equation, we refer [25]. First, let us define a discrete
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functional

Eh(φn) =
h

4

N∑
i=1

(
(φni )2 − 1

)2
+
ε2h

2

N∑
i=0

∣∣∣∇hφni+ 1
2

∣∣∣2 . (9)

We then separate the discrete energy functional Eh(φn) into three parts:

E(1)(φn) =
h

2

(
1 +

ν

∆t

) N∑
i=1

(φni )2, (10)

E(2)(φn) =
ε2h

2

N∑
i=0

∣∣∣∇hφni+ 1
2

∣∣∣2 , (11)

E(3)(φn) = h

N∑
i=1

(
(φni )4 + 1

4
+

ν

2∆t
(φni )2

)
. (12)

Let Ehc (φn) = E(2)(φn) + E(3)(φn) and Ehe (φn) = E(1)(φn) so that Eh(φn) =
Ehc (φn)− Ehe (φn). We then define an operator “gradh” as

gradhEh(φn)i = −∆h

h
∇Eh(φn)i = −∆h(φni )3 + ∆hφ

n
i + ε2∆2

hφ
n
i , (13)

where ∆2
hφi = ∆h(∆hφi) is the discrete biharmonic operator and ∇ is the usual

gradient in RN , i.e.,

∇Eh(φ)i = h
[
(φi)

3 − φi − ε2∆hφi
]
. (14)

For the matrix version of ∆h, we denote as

∆d =
1

h2


−1 1 0

1 −2 1
. . .

. . .
. . .

1 −2 1
0 1 −1

 . (15)

Matrix −∆d is the positive semi-definite with eigenvalues

λi =
4

h2
sin2 (i− 1)π

2N
, (16)

for i = 1, · · · , N . Let vi = wi/|wi| be the orthonormal eigenvector corresponding

to the eigenvalue λi, where wi =
(

cos (i−1)π
2N , cos 3(i−1)π

2N , . . . , cos (2N−1)(i−1)π
2N

)
. For

X and Y in RN such that X =
∑N
i=1 xivi and Y =

∑N
i=1 yivi, we define

〈X,Y〉−1,h := h

N∑
i=2

λ−1
i xiyi. (17)

We note that for X and Y such that x1 = 0 or y1 = 0, we have the identity

〈X,Y〉h = h

N∑
i=2

xiyi = h

N∑
i=2

λ−1
i λixiyi = 〈−∆dX,Y〉−1,h . (18)

We can rewrite schemes (6) and (7) in terms of a gradient of the discrete functional
Eh(φ) as

φn+1
i − φni

∆t
= −gradhEhc (φn+1)i + gradhEhe (φn)i, (19)
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for i = 1, · · · , N . The Hessian of E(1)(φ), denoted by H(1), is the Jacobian of
∇E(1)(φ) and therefore, it is given by

H(1) = ∇2E(1)(φ) = h
(

1 +
ν

∆t

)
IN , (20)

the Hessian matrix of E(2)(φ) is given as

H(2) = ∇2E(2)(φ) = −hε2∆d (21)

and the Hessian matrix of E(3)(φ) is given as

H(3) = ∇2E(3)(φ) = 3h


φ2

1 0
φ2

2

. . .

φ2
N−1

0 φ2
N

+
ν

∆t+ ν
H(1)

:= 3hD +
ν

∆t+ ν
H(1), (22)

where we have used Eq. (4). The eigenvalues of H(1) and H(2) are

λ
(1)
i = h

(
1 +

ν

∆t

)
, (23)

λ
(2)
i =

4ε2

h
sin2 (i− 1)π

2N
, (24)

for i = 1, 2, · · · , N . The eigenvalues of D are non-negative since φ2
i are non-negative.

Then, the eigenvalues of H(3) are non-negative from the Weyl’s Theorem [20]:

λ
(3)
i ≥ λi(D) +

ν

∆t+ ν
λ

(1)
1 ≥ 0. (25)

Note that λ
(1)
i , λ

(2)
i , and λ

(3)
i are non-negative for all i. Let φn+1−φn be expressed

in terms of vi as

φn+1 − φn =

N∑
i=1

αivi. (26)

If φn+1 is the solution of Eqs. (6) and (7) with given φn, then

Eh(φn+1) ≤ Eh(φn). (27)

We now prove the inequality (27). With an exact Taylor expansion of Eh(φn) about
φn+1 up to second order, we have

Eh (φn) = Eh
(
φn+1

)
+

〈
1

h
∇Eh(φn+1),φn − φn+1

〉
h

+

〈
1

2h
∇2Eh(ξ)(φn − φn+1),φn − φn+1

〉
h

, (28)

where ξ = θφn+(1−θ)φn+1 and 0 ≤ θ ≤ 1. By the discrete mass conservation and

the definition of vi, we have 0 =
〈
φn − φn+1,1

〉
h

= −
∑N
i=1 αi〈vi,1〉h = −h

√
Nα1,

and therefore α1 = 0. Now from Eq. (18), we have the identity〈
1

h
∇Eh(φn+1),φn − φn+1

〉
h

=
〈
gradhEh(φn+1),φn − φn+1

〉
−1,h

. (29)
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Using Eq. (29), we rearrange Eq. (28)

Eh(φn+1)− Eh(φn) =
〈
gradhEh(φn+1),φn+1 − φn

〉
−1,h

− 1

2h

〈
∇2Eh(ξ)(φn+1 − φn),φn+1 − φn

〉
h
. (30)

For the first term of Eq. (30), using the mean value theorem and Eqs. (19) and
(29), we have〈

gradhEh(φn+1),φn+1 − φn
〉
−1,h

=
〈

gradhEhc (φn+1)− gradhE
h
e (φn+1),φn+1 − φn

〉
−1,h

−
〈
φn+1 − φn

∆t
+ gradhE

h
c (φn+1)− gradhE

h
e (φn),φn+1 − φn

〉
−1,h

≤ −
〈

gradhE
h
e (φn+1)− gradhE

h
e (φn), φn+1 − φn

〉
−1,h

= −
〈

1

h
∇Ehe (φn+1)− 1

h
∇Ehe (φn),φn+1 − φn

〉
h

= −
〈

1

h
∇2Ehe (η)

(
φn+1 − φn

)
,φn+1 − φn

〉
h

= − 1

h

〈
H(1)

(
φn+1 − φn

)
,φn+1 − φn

〉
h
, (31)

where η = θφn + (1 − θ)φn+1 and 0 ≤ θ ≤ 1. For the second term of Eq. (30),
using Eh = −E(1) + E(2) + E(3), we have

− 1

2h

〈
∇2Eh(ξ)(φn+1 − φn),φn+1 − φn

〉
h

=
1

2h

〈(
H(1) −H(2) −H(3)

)
(φn+1 − φn),φn+1 − φn

〉
h

≤ 1

2h

〈
H(1)(φn+1 − φn),φn+1 − φn

〉
h
. (32)

From inequalities (31) and (32),

Eh(φn+1) − Eh(φn) ≤ − 1

2h

〈
H(1)(φn+1 − φn),φn+1 − φn

〉
h

= −1

2

(
1 +

ν

∆t

)∥∥φn+1 − φn
∥∥2

h
≤ 0. (33)

Therefore, we have proven the decrease of the discrete functional Eh for any time
step ∆t. Moreover, the decrease of the discrete functional Eh implies the pointwise

boundedness of the numerical solution; ‖φn‖∞ ≤
√

1 + 2
√
Eh(φ0)/h for all n [24].

Therefore, we deduce that the proposed numerical scheme is unconditionally stable.

3. Numerical solution. We use a multigrid method [34] to solve the governing
discretized system (6) and (7) at the implicit time level. To condense the discussion,
we describe only the relaxation step for the multigrid method. A pointwise Gauss–
Seidel relaxation is used as the smoother in the multigrid method. To derive the
nonlinear system, let us define it as

N
(
φn+1, µn+1

)
= (ϕn, ψn) , (34)
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where the nonlinear system operator N is

N(φn+1, µn+1) =

(
φn+1

∆t
−∆dµ

n+1, µn+1 −
(
φn+1

)3
+ ε2∆dφ

n+1 − ν φ
n+1

∆t

)
(35)

and the source term is (ϕn, ψn) = (φn/∆t,−φn − νφn/∆t) . For more details, refer
[36].

4. Numerical results. In this section, we perform numerical experiments for the
convergence test, linear stability analysis, unconditional stability test, and con-
vexity preservation. If we consider that the concentration field varies from −0.9
to 0.9 over the interfacial region with m grid points, the value ε is defined by
εm = hm/(2

√
2 tanh−1(0.9)).

4.1. Convergence test. Tables 1 and 2 summarize the discrete l2 and maximum
norms of errors and the convergence rates for space and time. For the simula-
tion, the initial condition is used as φ(x, 0) = 0.1 cos(2πx) in the computational
domain Ω = (0, 1). For the other parameters, ε = 0.03 and ν = 0.01 are used.
Because no analytical solutions are available, we use the relative error to calculate
the convergence rate. The spatial convergence rate is measured using mesh grids
with N = 2n for n = 5, 6, 7, 8. Numerical solutions are computed up to time
T = 0.1 with the time step size ∆t = 10−7. We define the error of a grid as the
difference between the grid and the average of the next finer grid cells as follows:
ehi := φh(xi, T ) −

(
φh/2(x2i−1, T ) + φh/2(x2i, T )

)
/2. The rate of convergence is

defined as the ratio of successive errors, log2(‖eh‖2/‖eh/2‖2). The second-order
accuracy of space is observed as expected (Table 1).

Table 1. Errors and convergence rates for space.

Mesh 32 Rate 64 Rate 128 Rate 256
‖eh‖2 7.793e-3 2.095 1.823e-3 2.014 4.515e-4 2.003 1.126e-4
‖eh‖∞ 1.602e-2 1.878 4.358e-3 1.967 1.115e-3 1.994 2.799e-4

To show the convergence of time integration, we fix the spatial grid as N = 512
and choose a set of time steps ∆t = 2n × 10−7, for n = 0, 1, 2, and 3. In addition,
we run the computation up to time T = 0.1. Note that we define the discrete error
as e∆t

i := φ∆t(xi, T )− φ∆t/2(xi, T ). The rate of convergence is defined as the ratio
of successive errors, log2(‖e∆t‖2/‖e∆t/2‖2). Table 2 indicates that the scheme is
first-order accurate in time.

Table 2. Errors and convergence rates for time.

∆t 8e-7 Rate 4e-7 Rate 2e-7 Rate 1e-7
‖e∆t‖2 8.739e-9 1.000 4.369e-9 1.000 2.185e-9 0.999 1.093e-9
‖e∆t‖∞ 2.804e-7 1.000 1.402e-7 1.000 7.012e-8 0.999 3.508e-8
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4.2. Linear stability analysis. We conduct the linear stability analysis near an
equilibrium solution φ = 0 in a one-dimensional space. Let us assume that the
solution can be expressed by

φ(x, t) =

∞∑
k=1

βk(t) cos(kx), (36)

where βk(t) is an amplification factor at the wave number k. After linearizing Eqs.
(1) and (2) about the equilibrium solution, and substituting Eq. (36) into the
linearized equations, we have

dβk(t)

dt
=
k2
(
1− ε2k2

)
1 + νk2

βk(t). (37)

The solution of Eq. (37) is βk(t) = βk(0) exp(ηkt), where ηk = k2(1−ε2k2)/(1+νk2)
is the growth rate. Note that the growth rate is positive if εk < 1. We denote kmax

by the wave number that has the maximal growth rate. In addition, the numerical
growth rate is defined by η̃k = log(‖φn‖∞/‖φ0‖∞)/T . For the numerical test,
we consider the initial condition φ(x, 0) = 0.01 cos(kx) in Ω = (0, π). Numerical
simulations are run up to T = 10−6 with ∆t = 10−8, h = 2−9π, and ε = 0.03.
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Figure 1. (a) Growth rate versus the wave number k. (b) maxi-
mal growth rate and (c) maximal wave number versus the viscosity
ν. Symbols are from the numerical computations and the solid
lines are from the linear stability analysis.

Figure 1(a) illustrates the growth rate η̃k versus the wave number k with differ-
ent viscosities ν. Solid lines correspond to analytic solutions from linear stability
analysis. Figures 1(b) and 1(c) compare the theoretical and numerical results for
the maximal growth rate ηkmax

and maximal wave number kmax, respectively. To
numerically compute ηkmax

and kmax, a quadratic interpolation is applied. The
numerical results and analytic values are in good agreement. Both the maximal
wave number kmax and maximal growth rate ηkmax tend to rapidly decrease with
increasing viscosity ν.
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4.3. Unconditional stability test. To demonstrate the unconditional stability
of the proposed scheme, we consider the initial data that is a random perturbation
of the state φ = 0 with values distributed uniformly between −0.1 and 0.1. Ω =
(0, 1) × (0, 1), h = 1/64, ε4, and ν = 1 are considered. Figure 2 shows numerical
results after ten iterations with three different temporal steps ∆t = 1, 10, and 100.
The results suggest that the proposed scheme is unconditionally stable.
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Figure 2. Snapshots after ten iterations with different time steps

4.4. Convexity preservation. We investigate the evolutions of the CH and vCH
equations with an initially convex shape in Ω = (0, 02) × (0, 0.005). The initial

condition is φ(x, y, 0) = tanh(d(x, y)/(
√

2ε6)), where

d(x, y) =

 0.001−
√

(x− 0.0075)2 + (y − 0.0025)2 if x ≤ 0.0075,

0.001−
√

(x− 0.0125)2 + (y − 0.0025)2 if x ≥ 0.0125,
−|y − 0.0025|+ 0.001 otherwise.

(38)

h = 0.01/64, ∆t = 10−6, and ε6 are used. Figure 3 plots the minimum of the
curvature, κ = ∇ · (−∇φ/|∇φ|), on the interface φ = 0 against the scaled time t/T ,
where T = 2.045e-5, 2.145e-5, 3.019e-5, and 9.077 for the viscosity ν = 0, 1e-7,
1e-6, and 1, respectively. The readers may refer to [22] for the numerical evaluation
of κ at the cell centers. Then, we use a bilinear interpolation to compute the
curvature values on the interface φ = 0 from the cell center data. The numerical
minimum curvature shows negative values for the CH equation (ν = 0) at early
evolutions. However, with increased viscosity, the minimum value of curvature
along the interface increases.
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Figure 3. Minimum curvature with different viscosities
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4.5. Boundedness of solution. We consider the following question [31]: If an
initial φ has values in [−1, 1], does the solution of Eqs. (1) and (2) have values
in [−1, 1] at all times? The authors in [7] rigorously answered for the question.
Here, we are interested in the numerical stationary solutions of the CH and vCH
equations for the same initial condition. We define φn+1 is the steady state if
‖φn+1−φn‖∞ < 10−9. The initial condition is sphere (Fig. 4(a)), which is defined
as

φ(x, y, z, 0) = tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

√
2ε

)
(39)

in Ω = (0, 1)× (0, 1)× (0, 1). For the numerical parameters, h = 1/64, ∆t = 0.1h,
ε = 0.0169, and ν = 1 are used. Figure 4(b) shows a slice plot of the steady states
along the line y = z = 0.5. We can observe that both steady state solutions are
identical and ‖φ‖∞ > 1 inside the drop. This result suggests that ‖φ‖∞ > 1 is due
to the curvature effect. For the CH equation case, these shrinkage phenomena were
also observed in [37].
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1
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CH
vCH
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Figure 4. (a) Initial condition and (b) slice plots (y = z = 0.5)
of the steady state solutions of CH and vCH equations with ν = 1.

5. Conclusions. We proposed an unconditionally stable scheme for the viscous
Cahn–Hilliard equation based on the finite difference method. We proved the un-
conditional stability, and it was confirmed through numerical experiments with
large time step sizes. Linear stability analysis showed that the solution of the vis-
cous Cahn–Hilliard equation decays more slowly than that of the Cahn–Hilliard
equation. The difference between the Cahn–Hilliard and viscous Cahn–Hilliard
equations was illustrated by examining various numerical experiments.
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[5] R. Chella and J. Viñals, Mixing of a two-phase fluid by cavity flow, Phys. Rev. E., 53 (1996),

3832–3840.
[6] L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field

equations, Comput. Phys. Commun., 108 (1998), 147–158.

[7] L. Cherfils, A. Miranville and S. Zelik, The Cahn–Hilliard equation with logarithmic poten-
tials, Milan J. Math., 79 (2011), 561–596.

[8] S. M. Choo, S. K. Chung and Y. J. Lee, A conservative difference scheme for the viscous

Cahn–Hilliard equation with a nonconstant gradient energy coefficient, Appl. Numer. Math.,
51 (2004), 207–219.

[9] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, An asymptotic analysis for a non-
standard Cahn–Hilliard system with viscosity, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013),

353–368.

[10] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior
for a nonstandard viscous Cahn–Hilliard system, SIAM J. Appl. Math., 71 (2011), 1849–1870.

[11] S. Dai and Q. Du, Motion of interfaces governed by the Cahn–Hilliard equation with highly

disparate diffusion mobility, SIAM J. Appl. Math., 72 (2012), 1818–1841.
[12] Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition,

SIAM J. Numer. Anal., 28 (1991), 1310–1322.

[13] C. M. Elliott and A. M. Stuart, Viscous Cahn–Hilliard equation II. Analysis, J. Differential
Equations, 128 (1996), 387–414.

[14] D. J. Eyre, An Unconditionally Stable One-Step Scheme for Gradient Systems, Unpublished

article, http://www.math.utah.edu/∼eyre/research/methods/stable.ps (1998).
[15] D. J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation, Mater.

Res. Soc. Symp. Proc., 529 (1998), 39–46.
[16] D. Furihata, A stable and conservative finite difference scheme for the Cahn–Hilliard Equation,

Numer. Math., 87 (2001), 675–699.

[17] C. G. Gal and M. Grasselli, Singular limit of viscous Cahn–Hilliard equations with memory
and dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1581–1610.
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