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We present a new numerical scheme for solving a conservative Allen–Cahn equation with a
space–time dependent Lagrange multiplier. Since the well-known classical Allen–Cahn
equation does not have mass conservation property, Rubinstein and Sternberg introduced
a nonlocal Allen–Cahn equation with a time dependent Lagrange multiplier to enforce con-
servation of mass. However, with their model it is difficult to keep small features since they
dissolve into the bulk region. One of the reasons for this is that mass conservation is real-
ized by a global correction using the time-dependent Lagrange multiplier. To resolve the
problem, we use a space–time dependent Lagrange multiplier to preserve the volume of
the system and propose a practically unconditionally stable hybrid scheme to solve the
model. The numerical results indicate a potential usefulness of our proposed numerical
scheme for accurately calculating geometric features of interfaces.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The Allen–Cahn (AC) equation (Allen & Cahn, 1979) was introduced originally as a phenomenological model for antiphase
domain coarsening in a binary alloy:
@/
@t
ðx; tÞ ¼ �M

F 0ð/ðx; tÞÞ
�2 � D/ðx; tÞ

� �
; x 2 X; t > 0; ð1Þ

n � r/ðx; tÞ ¼ 0; x 2 @X: ð2Þ
Here X; t; M, and n denote a bounded domain, time, a positive kinetic coefficient, and the unit outer normal vector on the
domain boundary, respectively. Fð/Þ ¼ 0:5/2ð1� /Þ2 is a double-well potential and � is the gradient energy coefficient
related to the interfacial energy. The quantity /ðx; tÞ 2 ½0;1� is an order parameter, which is one of the concentrations of
the two components in a binary mixture. For example, / ¼ 1 in the one phase and / ¼ 0 in the other phase. The interface
between two phases is defined by C ¼ x 2 Xj/ðx; tÞ ¼ 0:5f g. Allen and Cahn (1979) also showed that the normal velocity
v on a single closed interface C is governed by its mean curvature
vðx; tÞ ¼ jðx; tÞ; x 2 C; ð3Þ
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where jðx; tÞ is the mean curvature of the interface C. This dynamical property has been studied in Ma, Jiang, and Xiang
(2009), Brassel and Bretin (2011), Ren and Wei (2009), Ward and Wetton (2001). Fig. 1(a) and (b) show the temporal evo-
lutions of curves with the classical AC and the conservative AC equations in two dimensions, respectively. The dashed lines
are the initial curves and the solid lines are the evolutions of interfaces. The directions of evolutions are indicated by arrows.
We observe that the classical AC does not conserve its initial mass, whereas the conservative AC equation does. We can check
that the AC type dynamics does not preserve the volume fractions, i.e.,
Fig. 1.
directio
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/t dx ¼
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MF 0ð/Þ
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Z
@X

Mn � r/ ds ¼ �
Z

X

MF 0ð/Þ
�2 dx;
which is not always zero. Here, we set M ¼ 1 for simplicity. To preserve the volume, Rubinstein and Sternberg (1992) intro-
duced a Lagrange multiplier bðtÞ into the AC model
@/
@t
ðx; tÞ ¼ � F 0ð/ðx; tÞÞ

�2 þ D/ðx; tÞ þ bðtÞ: ð4Þ
Here bðtÞmust satisfy bðtÞ ¼
R

X F 0ð/ðx; tÞÞ dx=ð�2
R

X dxÞ to keep the mass conservation, and this formulation has been widely
used (Bates & Jin, 2013; Yang, Feng, Liu, & Shen, 2006; Zhang & Tang, 2007). The normal velocity v on a single closed interface
C is given by the volume-preserving mean curvature flow:
vðx; tÞ ¼ jðx; tÞ � 1
jCj

Z
C
j ds; x 2 C; ð5Þ
where jCj is the total curve length in two-dimensional space and the total area in three-dimensional space. Rubinstein and
Sternberg’s model has been studied analytically and numerically (Beneš, Yazaki, & Kimura, 2011; Brassel & Bretin, 2011;
Bronsard & Stoth, 1997; Ward, 1996; Xia, Xu, & Shu, 2009; Yue, Zhou, & Feng, 2007;). However, it has a drawback on pre-
serving small features since the Lagrange multiplier is only a function of time variable. For example, there is a critical radius
of drop which eventually disappears below the radius. This phenomenon is observed in the frame of the Cahn–Hilliard model
(Yue et al., 2007).

The main purpose of this article is to propose a practically unconditionally stable numerical scheme for the conservative
AC equation with a space–time dependent Lagrange multiplier. The scheme is based on the recently developed hybrid
scheme for the AC equation (Li, Lee, Jeong, & Kim, 2010) with an exact mass-conserving update at each time step.

The paper is organized as follows. In Section 2, we present the conservative AC equation with a space–time dependent
Lagrange multiplier. A numerical algorithm using an operator splitting method is described in Section 3. Several numerical
results demonstrating the accuracy and robustness of the proposed scheme are described in Section 4. Conclusions are made
in Section 5.

2. Conservative Allen–Cahn equation

The authors in Brassel and Bretin (2011) proposed the following conservative AC equation which guarantees to preserve
small geometric features:
@/ðx; tÞ
@t

¼ � F 0ð/ðx; tÞÞ
�2 þ D/ðx; tÞ þ bðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fð/ðx; tÞÞ

p
; ð6Þ
(a) (b)

Temporal evolutions of arbitrary curves with (a) the AC equation and (b) the conservative AC equation. The dashed lines are the initial curves and
ns of evolutions are indicated by arrows.
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where bðtÞ ¼
R

X F 0ð/ðx; tÞÞ dx= �2
R

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fð/ðx; tÞÞ

p
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� �
. Then, the solution /ðx; tÞ of the conservative AC Eq. (6) possesses the

total mass conservation property, i.e.,
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X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
dx ¼ 0;
where we used the homogenous Neumann boundary condition (2). We note that to conserve mass, there is a classical model
such as the Cahn–Hilliard equation (Abels, Garcke, & Grun, 2012; Cahn & Hilliard, 1958; Heida, Malek, & Rajagopal, 2012;
Lowengrub & Truskinovsky, 1998). Also, see (Heida, Malek, & Rajagopal, 2012) on the development and generalizations of
Allen–Cahn and Stefan equations within a thermodynamic framework.

3. Numerical solution algorithm

In this section, we propose a new hybrid numerical algorithm for solving the conservative AC equation. For simplicity, we
consider a two-dimensional space. The three-dimensional case is defined analogously. Let a computational domain
X ¼ ½a; b� � ½c; d� be partitioned into a uniform mesh with spatial step size h ¼ ðb� aÞ=Nx ¼ ðd� cÞ=Ny. Here, Nx and Ny are
the numbers of cells in x- and y-directions, respectively. The center of each cell, Xij, is located at xij ¼ ðxi; yjÞ ¼ ðaþ
ði� 0:5Þh; c þ ðj� 0:5ÞhÞ for i ¼ 1; . . . ;Nx and j ¼ 1; . . . ;Ny. Let /n

ij be approximations of /ðxi; yj;nDtÞ, where Dt ¼ T=Nt is the
temporal step size, T is the final time, and Nt is the total number of time steps. For the zero Neumann boundary condition,
we use rd/

n
1=2;j ¼ rd/

n
Nxþ1=2;j ¼ rd/

n
i;1=2 ¼ rd/

n
i;Nyþ1=2 ¼ 0, where rd/

n
iþ1=2;j ¼ ð/

n
iþ1;j � /n

ijÞ=h. We define a discrete Laplacian

operator by Dd/
n
ij ¼ ðrd/

n
iþ1=2;j �rd/

n
i�1=2;jÞ=h and the discrete l2 inner product by ð/;wÞh ¼ h2PNx

i¼1

PNy

j¼1/ijwij. We also define

the discrete norm as jj/jj2 ¼ ð/;/Þh. In this paper, we use an operator splitting method, in which we numerically solve the
original problem Eq. (6) by solving successively a sequence of simpler problems:
/t ¼ D/; ð7Þ

/t ¼ �
F 0ð/Þ
�2 ; ð8Þ

/t ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fð/Þ

p
: ð9Þ
First, we solve Eq. (7) by applying the implicit Euler’s method:
/nþ1;1
ij � /n

ij

Dt
¼ Dd/

nþ1;1
ij : ð10Þ
We use the multigrid method (Aristotelous, Karakashian, & Wise, 2013; Briggs & Steve, 1987; Trottenberg, Oosterlee, &
Schuller, 2001) to solve the implicit discrete Eq. (10). We should note that we can use the Crank–Nicolson scheme as in
Li et al. (2010) to solve Eq. (7). However, although the Crank–Nicolson scheme is unconditionally stable, it is well-known
that the scheme suffers from oscillatory behavior with large time steps. Next, Eq. (8) is solved analytically using the method
of separation of variables (Stuart & Humphries, 1998) and the solution is given as
/nþ1;2
ij ¼ 0:5�

1� 2/nþ1;1
ij

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2/nþ1;1

ij

	 
2
þ 4/nþ1;1

ij 1� /nþ1;1
ij

	 

e�

Dt
�2

r : ð11Þ
Finally, we discretize Eq. (9) as
/nþ1
ij � /nþ1;2

ij

Dt
¼ bnþ1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F /nþ1;2

ij

	 
r
: ð12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir
By Eq. (12), we get /nþ1
ij ¼ /nþ1;2

ij þ Dtbnþ1;2 2F /nþ1;2
ij

	 

, then by the property of mass conservation
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ij
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r
: ð14Þ
Now, our proposed numerical scheme can be summarized as
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4. Numerical results

In this section, we perform numerical experiments such as the basic mechanism of the model, a comparison with previ-
ous model, and the temporal evolution of drops in two- and three-dimensional spaces. The equilibrium order parameter
/ ¼ 0:5ð1þ tanh½x=ð2�Þ�Þ varies from 0.05 to 0.95 over a distance of approximately 4� tanh�1ð0:9Þ across the interfacial
regions. Therefore, if we want this value to be approximately m grid points, then � value is given as �m ¼ hm=
½4tanh�1ð0:9Þ� (Kim, 2012). Throughout the rest of the paper, we shall use �8 if not otherwise specified.

4.1. Basic mechanism of the model

We start with an example which illustrates the basic mechanism of the algorithm Eqs. (15)–(17). Let us consider an ellip-
tical initial shape (see dotted line in Fig. 2). If we take only the AC step Eqs. (15) and (16), then the initial shape shrinks under
the motion by mean curvature (see dashed line) (Huisken, 1984). The position with a higher curvature moves faster than
those with lower curvatures on the curve. However, with the mass correction step Eq. (17), the curve uniformly moves to
the outward normal direction (see solid line). By continuing this process, the initial ellipse relaxes to the circular shape with
the same mass.

4.2. Comparison of two models

To see the difference between two models Eqs. (4) and (6), we consider the following numerical experiments. On a
computational domain X ¼ ½0;1� � ½0;1� with a mesh grid of 128� 128, the initial conditions are given as (i)
/ij ¼ 1 if 40 6 i; j 6 88, (ii) /ij ¼ 1 if 56 6 i; j 6 72, and /ij ¼ 0 otherwise (see Fig. 3(a)). The temporal step size is chosen
as Dt ¼ 1:0e�5.

Fig. 3(b) and (c) show the numerical results of Eqs. (4) and (6) at a steady state with two different initial conditions,
respectively. Here, we define the numerical steady state as the state when the discrete l2 norm of the difference between
/nþ1 and /n becomes less than a given tolerance, tol ¼ 1:0e�6. Observing the numerical results in the top row of Fig. 3,
we can see that both models work well when the initial feature is large enough. It should be noted that the order parameter
in the outside phase is 0.009 for Eq. (4), on the other hand, the value is 0.0 for Eq. (6) with our proposed numerical scheme.
The reason why the order parameters have different values is that our scheme corrects mass loss in the interfacial region. If
the geometry is small, then the geometry disappears with Eq. (4) (see the second row of Fig. 3(b)). On the other hand, with
our scheme, the drop stays as shown in the second row of Fig. 3(c).

Next, we present numerical simulations of three-dimensional cubes in Fig. 4. The initial conditions are given on
X ¼ ½0;1� � ½0;1� � ½0;1� with h ¼ 1=128 as (i) /ijk ¼ 1 if 40 6 i; j; k 6 88, (ii) /ijk ¼ 1; if 56 6 i; j; k 6 72, and /ijk ¼ 0
otherwise (see Fig. 4(a) for the isosurfaces / ¼ 0:5). The temporal step size Dt ¼ 1:0e�5 is used. Fig. 4(b) and (c) show
the steady states with Eqs. (4) and (6), respectively. The three-dimensional results are almost similar to the two-dimensional
ones.
Initial shape
Allen−Cahn step
Mass correction step

Fig. 2. Basic mechanism of the proposed numerical scheme.



Fig. 3. (a) Initial conditions with two different shapes. (b) and (c) Are numerical results from Eqs. (4) and (6), respectively.

Fig. 4. (a) Two different-sized cubes for initial conditions. (b) and (c) Are numerical results from Eqs. (4) and (6), respectively.
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4.3. Evolution of disks

In Bronsard and Stoth (1997), the authors gave the evolution law for radii of spheres in n-dimensional geometric flows.
For the m interfaces of radii ri for i ¼ 1;2; . . . ;m with rj < rjþ1 for j ¼ 1;2; . . . ;m� 1, the equations of evolution in
n-dimensional case are given by
dri

dt
¼ ðn� 1Þ

Pm
k¼1rn�2

kPm
k¼1rn�1

k

� 1
ri

 !
; i ¼ 1;2; . . . ;m:
We consider two disjoint circular interfaces in two-dimensional space. Assume that the two interfaces have radii r and R
with r < R, then the equations of evolution become
dr
dt
¼ 2

r þ R
� 1

r
; ð18Þ

dR
dt
¼ 2

r þ R
� 1

R
: ð19Þ
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Fig. 5. Evolution of the radii of two distinct circles against time. R and r are radii from Eq. (6) and Rp and rp are radii from Eq. (4). The solid lines are the
corresponding reference solutions.

Fig. 6. Snapshots at the same time T ¼ 50h2 with three different time steps. The time steps are shown below each figure.
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From the above equations, we can get the time tf at which smaller circle disappears by solving a system of ordinary differ-
ential equations (Brassel & Bretin, 2011):
tf ¼ �0:5r0R0 þ 0:25 r2
0 þ R2

0

	 

ln 1þ 2r0R0

ðR0 � r0Þ2

 !
; ð20Þ
where r0 and R0 are the initial radii. We present results for r0 ¼ 0:1 and R0 ¼ 0:15 using a temporal step size
Dt ¼ 1:1264� 10�4 on X ¼ ½0;1� � ½0;1�with a mesh grid 128� 128. Then tf ¼ 0:0133 by Eq. (20). For the reference solutions
of r and R, we numerically solve the ordinary differential equations by using the fourth order Runge–Kutta method (Bhargava
& Takhar, 2000; Burden & Faires, 2005; Zhao & Wei, 2013).

In Fig. 5, the solid lines represent the result from the Runge–Kutta method, dot and star represent the radius evolutions of
R and r with Eq. (6), respectively, and circle and diamond also represent the radius evolutions of Rp and rp with Eq. (4),
respectively. As shown in Fig. 5, R grows monotonically with our numerical scheme and r disappears at the similar time
as predicted from the analytic calculation. Compared to Eq. (6), the results from Eq. (4) do not predict the theoretical pre-
diction because most mass diffuse into the bulk phase from a global mass conservative Lagrange multiplier.

4.4. Practically unconditional stability test

We perform a numerical experiment to demonstrate the practically unconditional stability of the proposed scheme. In
this test, the initial condition is random perturbation around 0.5, i.e., /ðx; y;0Þ ¼ 0:5þ 0:02randðx; yÞ, where randðx; yÞ is a
random number between �1 and 1. We use a mesh grid size 128� 128 on the computational domain X ¼ ½0;1� � ½0;1� with
three different time steps, Dt ¼ 0:1h2

; h2, and 10h2. Fig. 6(a)–(c) are snapshots at the same time T ¼ 50h2 with three different
time steps. These results suggest that the proposed scheme is practically unconditionally stable. We should note that the
value of Dt is typically smaller than 0:1h2 to get accurate numerical approximations. Otherwise, the numerical scheme
may unnecessarily result in large discretization errors. Therefore, the fact that we can use two orders of magnitudes larger
time step than Dt ¼ 0:1h2 suggests the proposed scheme is practically unconditionally stable.
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5. Conclusions

We presented a new numerical scheme for solving the conservative Allen–Cahn equation with a space–time dependent
Lagrange multiplier. Rubinstein and Sternberg’s nonlocal Allen–Cahn equation conserves mass. However, with their model it
is difficult to keep small features since they dissolve into the bulk region because mass conservation is realized by a global
correction using the time-dependent Lagrange multiplier. To resolve the problem, we used a space–time dependent Lagrange
multiplier to preserve the volume of the system and proposed a practically unconditionally stable hybrid scheme to solve the
model. We performed numerical experiments such as the basic mechanism of the model, a comparison with previous model,
the temporal evolution of drops in two- and three-dimensional spaces, and a practically unconditional stability test of the
proposed numerical scheme. The numerical results indicate a potential usefulness of our proposed numerical scheme for
accurately calculating geometric features of interfaces. In particular, it is applicable to various problems with a mass conser-
vation constraint.
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