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We investigate the energy-minimizing wavelengths of equilibrium states for diblock copolymers in the
hex-cylinder phase. The mathematical model is the Cahn—Hilliard equation with long-range interactions.
The numerical scheme is based on a linearly gradient stable method and the resulting discrete system of
equations is solved by a Fourier-spectral method. We solve the equations in non-square domains because
the periodic unit is not a square. We choose the computational domains as rectangles of aspect ratio v/3
(height/width). We run the computation until the system reaches a numerical equilibrium state. We
repeat these calculations in domains of gradually increasing size and then find the wavelength that
minimizes the domain-size-scaled total energy. We investigate the effect of the parameters on the
energy-minimizing wavelength. We also propose a formula for a non-square domain that is close to a
square domain and has an exact periodicity.

Keywords:

Diblock copolymer
Fourier-spectral method
Hex-cylinder phase

Nonlocal Cahn—Hilliard equation © 2015 Elsevier B.V. All rights reserved.

1. Introduction where X = (x, y) and t are the spatial and temporal variables,

respectively. F(¢) = 0.25(¢2 — 1)? is the Helmholtz free energy, ¢ is

the gradient energy coefficient, « is inversely proportional to the

square of the total chain length of the copolymer, and

¢ = [¢(x,0)dx/ |Q} is the average concentration over the domain Q
Q

A diblock copolymer is a linear chain consisting of two blocks of
different types of monomers bonded covalently to each other. The
two blocks are mixed above the critical temperature; however, the
copolymer melt undergoes phase separation below the critical
temperature because of the incompatibility of different blocks. As a
result of phase separation, periodic structures including lamellae,
spheres, cylinders, hexagons, and gyroids are observed in a
mesoscopic-scale domain [1-8]. Cylindrical morphologies have
been studied for high-density data storage [9], photonic crystals
[10,11], liquid crystals [12,13], and filtration membranes [14,15]. In
this paper, we focus on the hex-cylinder phase [16,17] of diblock
copolymers. As a model, we use the mathematical approach pro-
posed by Ohta and Kawasaki [18]. Let ¢ be the relative local

[19]. The total system energy is given as

ew = [(Fo)+5

Q
+5 / / GOX— ) (#(X) — 8) (9(y) — #)dydx.

V¢’2>dx
(2)

monomer density difference. Then the nonlocal Cahn—Hilliard (CH)
equation in a two-dimensional domain is

dg (X, t)
ot

= A(Fo(x.0) - 289(x. D) —a(dx,0) =), (1)
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where G is the Green's function of —A in Q with periodic boundary
conditions, i.e., —AG(x) = d(x). Then, the evolution Eq. (1) can be
derived using the H~! gradient flow for the free energy (2) and Eq.
(2) can be rewritten as

£(¢) = Q/(F(qa)+€22|v¢}2)dx+g Q/|V1//|2dx,

where y satisfies —Ay = ¢ — ¢ with periodic boundary conditions
[20].
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The main purpose of this paper is to investigate the energy-
minimizing wavelengths of equilibrium hex-cylinder states in
diblock copolymers in a non-square domain. This work is a
generalization of a previous algorithm [21].

The rest of this paper is organized as follows. In Section 2, we
describe the numerical solution. In Section 3, we present numerical
experiments. Conclusions are summarized in Section 4.

2. Numerical method

In this section, we present an unconditionally stable Fourier-
spectral method for the nonlocal CH Eq. (1) in two-dimensional
space Q = (0, Ly) x (0, Ly). Let Ny and Ny, be positive even integers.
Let hy = Ly/Nx and hy = L,/N,, be the spatial step sizes in the x- and y-
directions, respectively. We denote cell-centered points as
(*m.Yn) = ((M—0.5)hy, (n—0.5)hy). Let X, and uk, be approxima-
tions of ¢(Xm, Yn, tx) and u(xm, yn, tx), respectively, where t; = kAt
and At is the temporal step. For the given data {¢’n‘1n|m =1,---,Ny

and n = 1, -+, N}, the discrete Fourier transform is defined as
~k
bpg = er;’{:lz ¢" e where £, =2np/Ly and

nq = 2mq/Ly. The inverse discrete Fourier transform is

i(£pXm +1gYn)|

Ny/2—1 N,/2-1
mn N N pq .
yp_ Nx/2 q=—Ny/2

_1Ny/2-1 ok
Let ¢(x,y, kAD) = 1/NxNy>5,_ i M/2 15002 /2 Ppg

Then, we have

ei(Epx+ngy)

Ny/2-1 Ny/2—1

Ag(x kAt)—_L 2/: yz/ 22 4 p2) Gk ei(Exiny)

ox., T NiN p Mg ) Ppq :
X J/pszx/Z quNy/z

We apply a linearly stabilized splitting scheme [22] to Eq. (1).

¢k+1 ¢Ir<nn _

o <2¢k+1

ZAqbk“ +f(¢$nn>) _a< ﬁ?ﬁl _5)7
(4)

where fl¢) = ¢>—3¢. Thus, Eq. (4) can be transformed into the
discrete Fourier space as follows:

~k+1 ~k
¢ —¢ ~k+1 ~k+1 &
pq A pq _ (gp + nq) (2¢pq + e (gp + m;)d’pq +qu>

~k+1 —
(3 9)
Therefore, we obtain the following discrete Fourier transform

~k

~k o~
k1 bpq — (gzzv + né)prq +altglpg
pqg =

1+At[a+2(§ﬁ+’r]3) +92(g§+n3)z]

Then, the updated numerical solution ¢! can be computed
using Eq. (3). We define the discrete total energy as

&(#) =

<¢m n+1 =

Ngl( ( ) {(d’m-ﬂ n lr<nn>

m=

Note that y satisfies —Ay = ¢ — ¢ with periodic boundary con-
ditions [20].

3. Numerical experiments

In this section, we perform a number of numerical tests.
Throughout the numerical experiments, unless otherwise specified,
we use € = 1/(20v2), a = 100, hy = 0.0025, and At = 0.25.

3.1. Evolution of a random perturbation

We examine the evolution of a random perturbation with small
magnitude about the average concentration ¢. For this purpose, the
initial condition is set to ¢(x,y,0) = ¢ + 0.1rand(x,y) in the
computational domain Q = (0.5) x (0.5). Here, rand(x, y) is a
random number between —1 and 1. In Fig. 1, the top and bottom
rows show the evolution of ¢ with ¢ = 0 and ¢ = —0.3, respectively.
hx = hy = 0.02 and At = 1 are used. We can observe lamellar and
hex-cylinder phases when ¢ = 0 and ¢ = —0.3, respectively.

A perfectly regular hexagonal pattern is not permitted in a
square box or any box with a rational aspect ratio because the
structure has to fit the periodic boundary conditions [23]. We
consider one periodic unit in a hexagonal pattern (see Fig. 2(a)). As
shown in Fig. 2(b), a hexagonal pattern has one-period in a box
with the aspect ratio Ly : Ly = 1: v/3. Therefore, we have to use
hx#hy. In this paper, we set hy as hy, = Ly/(2round|[L,/(2h)]), where
round [x] is the round function, which rounds x to the nearest
integer.

3.2. Discrete total energy dissipation

We investigate the temporal evolution of the normalized
discrete total energy £9(¢)/£9(¢°). For this, we use the initial
condition ¢(x, y, 0) = —0.3 + O.Irand(x, y) in Q = (0, Ly) x (0,L).
Ly = 304hy, Ly = 3Ly, and T = 400 are used. The numerical result is
shown in Fig. 3. The normalized discrete total energy is nonin-
creasing and tends to a constant value as time proceeds (see the
solid line in Fig. 3). Further, the four inscribed figures (a)—(d) show
the concentration field at times t = 25, 100, 125, and 375,
respectively.

3.3. Optimal wavelength having minimum discrete total energy

We describe an algorithm for finding the total energy-
minimizing wavelength (see Fig. 4). We define the optimal
wavelength L as the period of the hexagonal lattice that has the
lowest energy. In other words, L* means the smallest length
having the global minimum of the domain-scaled discrete total
energy.

To calculate L*, we solve Eq. (1) until a numerical equilibrium
state is reached with given values of hy, At, ¢, and «. In this paper, we
define the numerical equilibrium state as that in which the
consecutive error is not larger than the prescribed tolerance, that is,

max(’(p"+l - ¢"’)/At < 1.0 E-6. The initial condition is ¢(x, y,
0) = —0.3 + 0.1 cos(2mx/Ly)cos(2my/Ly) in Q = (0, Ly) x (0, L), where

lfnn)z} {(‘Pm-ﬂ n ﬁm)z + (‘pfn.m—l - W’r(nn)z} )
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Fig. 1. Evolution of ¢ with ¢ = 0 (top row) and ¢ = —0.3 (bottom row). Evolution times are given below each figure.

Ly starts at 2h, and increases in steps of 2hy. Let M be the smallest
even integer such that the domain-scaled total energy £9/ (LxLy) =
£9/(v/3M2h2) is minimized. Construct the quadratic polynomial
passing the three  points (M = 2)hy, £4/(M — 2)hy)),
(Mhy, £%/(Mhy)), and ((M + 2)hy, £2/((M + 2)hy)); then define the
optimal length L" as the critical point of the polynomial (see Fig. 4).

@ )

Fig. 2. Schematic representation of (a) one-period hexagonal pattern and (b)
computational domain with the aspect ratio Ly : Ly = 1: v/3.

£4ek)
5d(¢0) A
o ° | ° |
| @ ®) () ° q ° |
q (]
0.99+
(a) (b) (c) (d)
0.98+ (a)
0 160 260 360 4(?Ot

Fig. 3. Time evolution of the normalized discrete total energy £9(¢k)/£4(¢0). (a)—(d):
snapshots of the concentration field ¢ at times t = 25, 100, 125, and 375, respectively.

Another fast method for searching the optimal length is that we
start from the length L =2round[L;s/(2hy)]hx, wWhere

Lis = 2V2me/\/1 - 352 is the most fastest growth wavelength ob-
tained by a linear stability analysis [21]. Next, we compute the slope
of the discrete energy at Ly = L using the centered difference. If it is
negative, then we proceeds the same process as before, which is
schematically illustrated in Fig. 5. Otherwise, we decrease L, and
apply the similar process to get the optimal wavelength L".

Fig. 6 shows the temporal evolution of the domain-size-scaled
total energy £7/(LsLy). In the figure, the first minimum is ob-
tained at Ly = L* =0.44, the second minimum is at v/3L* =0.76, and
the third minimum is at 2L*=0.88. Further, the inscribed small
figures in Fig. 6(a)—(c) represent the morphologies of ¢ with
Ly = 0.44, 0.76, and 0.88, respectively.

Next, we perform a convergence test for the optimal wavelength
with respect to the space and time step sizes. Table 1 shows the
optimal length L" for various values of hy and At. The result indicates
that the solution with hy = 0.0025 and At = 0.25 is sufficiently
accurate. We will use these numerical values in the subsequent
sections.
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Fig. 4. Schematic of algorithm for searching optimal length L. Here, Ly_» = (M—2)hy,
Ly = Mhy, and Ly, 2 = (M + 2)h,.
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Fig. 5. Schematic illustration of starting position L for fast searching of optimal length
L".
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Fig. 6. Domain-size-scaled total energy Sd/(LXLy) versus L, with the initial condition
$(x.y,0) = —0.3 4 0.1 cos(2mx/Ly)cos(2my/Ly). Inscribed small figures (a)—(c) are the
morphologies in the corresponding domains.

34. Effect of a and ¢ on L*

Choksi et al. [20] provided the relation of the domain size L", €,
and « as

To investigate the expected theory, we perform the numerical
simulation with the initial condition
¢(x,¥,0) = —0.3 + 0.1 cos(2mx/Ly)cos(2my/Ly). We fix « = 100 and
change the value of ¢ from 0.002 to 0.012.

Fig. 7 shows In(L") versus the value of In(e/a). As shown in Fig. 7,
we see the following linear fitting:
In(L*) = 0.3622 In(e/«) + 1.9878, which is close to the theoretical
factor, 1/3.

3.5. Effectof gon L*

Fig. 8 illustrates the effect of ¢ on the optimal length L". Here, we

Table 1

Optimal wavelength L" for various values of hy and At.
At\hy 0.01 0.005 0.0025
1 0.4381374671 0.4389679522 0.4392048980
0.5 0.4381374181 0.4389679418 0.4392048965
0.25 0.4381373929 0.4389679362 0.4392048956

-1.2
In(L*) O Numerical data

—0.36221n (¢/a) + 1.9878

-1.4+

-1.6+

11 -10.5 -10

—9‘.5 In(e/a) -9

Fig. 7. Linear fitting of In(L") as a function of In(e/«).

use the initial condition ¢(x,y,0) = ¢ + 0.1 cos(2mx/Lx)cos(2my/Ly).
As shown in Fig. 8, the values of L* decrease from ¢ = —0.32 to
¢ =-0.22.

3.6. Square-like domain

As a last numerical test, we consider a square-like domain.
Because the aspect ratio of v/3 in the periodicity matched domain is
high, we want to have a domain that is close to a square and has an
exact periodicity. Given Ly = mL", where m is a positive integer, we
propose L, = round[m/v/3]v/3L".

With the initial condition ¢(x,y,0) = —0.3 + 0.1rand(x,y), we
have a numerical test of the proposed square-like domain
Q = (0,3L*) x (0,2v/3L*). Here, we choose m = 3, L" = 0.44, and
then we obtain L, = round[3/v3]v3L* = 2v/3L* by the proposed
method. Fig. 9 shows the numerical results for ¢ at time t = 0, 25,
100, and 375. As shown in Fig. 9, the morphologies of ¢ change to
the hex-cylinder phase. In particular, the last figure (t = 375),
which is in the steady state, has six periods of the hex-cylinder
phase. Therefore, if the domain is set to a square-like domain by
this method, the results in the steady state always have (m x n)-
periods of the hex-cylinder phase.

0.440

0.438

0.436

4% 32

-0.30 -0.28 -0.26 -0.24

Fig. 8. Optimal length L as a function of ¢.
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t =375

t =100

Fig. 9. Temporal evolution of ¢ in a square-like domain Q = (0,3L*) x (0,2+v/3L*). Evolution times are given below each figure. At t = 375, which is in the steady state, ¢ has six
periods of a hexa-diagonal pattern.

Table 2

Optimal wavelength L* and its domain-size-scaled energy £%/(L*)® with varying hy.
hy r &y
0.007 0.561416615172829 0.176469254493034
0.009 0.560961950067279 0.176432974353117
0.011 0.559801365340538 0.176386824575143
0.013 0.558809092603222 0.176331845186166

size. The initial condition is used ¢(x, y, z, 0) = -1 if x, y,z < f and
the other seven corners, or |x — L/2|,|y — L/2|,|z — L/2| < B; other-
wise ¢(x, ¥, z, 0) = 1 in a cubic domain Q = (0,L)}, where
8 =LY (¢+1)/32 as shown in Fig. 11(a). With varying hy from
0.007 to 0.013, we obtain the optimal wavelength L* and its cor-
responding domain-size-scaled energy £9/ (L*)3 in Table 2.

3.7. Energy of stationary profiles

In this section, we investigate the domain-size-scaled energies
of the final stationary profiles. Before we perform the numerical
simulation, we implement the convergence test for spatial step

0.5606

0.5596

0.55860

007 0.009 0.011 h, 0.013

Fig. 10(a) and (b) show the convergence of optimal wavelength
L" and its domain-size-scaled energy £%/(L*)* with respect to hy,
respectively.

From now on, we choose the spatial step size hy = 0.007. Fig. 11
(b) shows the domain-size-scaled energy £%/(L)* as a function of
the domain size L. Here, the optimal length L" is calculated by the
interpolation with a quadratic polynomial from discrete results

0.17648
Ed
(L¥)?

0.17644[

0.17640(

0.17636

0'1768.2007 0.609 0.0"l1

(b)

h, 0.013

Fig. 10. Convergence of (a) optimal wavelength L* and (b) its domain-size-scaled energy &4 /(L*)3 with respect to hy.
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Fig. 11. (a) Schematic illustration of initial condition, (b) domain-size-scaled total energy for various domain sizes, and (c) isosurface of steady spherical phases

with L = round|L* /hx]hx = 0.56 and § = 0.14877.



804 D. Jeong et al. / Current Applied Physics 15 (2015) 799—804

0.245
& - --lamella
3T == —hexa
sphere
0.210r 1
0.175 : : : -
0 0.1 0.2 0.3 ¢ 04

Fig. 12. Energy of the final stationary profiles showing lamellar, hexagonal, and
spherical phases in a three-dimensional domain as a function of the average concen-
tration ¢.

£%/L)3. In this case, we have the optimal length L* is
0.561416615172829 with the domain-scaled total energy
0.176469254493034. In Fig. 11(c), we can see the stationary profile
of ¢(x, y, z) as the isosurface of spherical phases with
L = round|L* /hx]hy = 0.56 and § = 0.14877.

Finally, we plot the domain-size-scaled energies of the final
stationary profiles such as the lamellar, hexagonal, and spherical
phases in a three-dimensional domain as a function of the average
concentration ¢. In Fig. 12, we can see that as the average con-
centration ¢ increases, the phase changes from lamellar to hexag-
onal to spherical, as reported in the literature [20].

4. Conclusions

The main purpose of this paper is to investigate the energy-
minimizing wavelengths of the equilibrium hex-cylinder states in
diblock copolymers using the Cahn—Hilliard equation with long-
range interactions. The numerical scheme is based on a linearly
gradient stable method, and the resulting discrete system of
equations is solved by a Fourier-spectral method. To find the
optimal wavelength that has the global minimum of the energy, we
use the algorithm in a previous paper [21]. We run the computation
until the system reaches a numerical equilibrium state. We repeat
these calculations in domains of gradually increasing size and then
find the wavelength that minimizes the domain-size-scaled total
energy.

A perfectly regular hex-cylinder phase has one period in a
rectangular domain of aspect ratio v/3 (height/width) because of
the periodic boundary condition. Considering this periodicity, we
proposed the method for choosing the computational domain. We
investigated the effect of the parameters, which are «, ¢, and &, on
the energy-minimizing wavelength. As the values of «, ¢, and ¢
increase, the optimal wavelength decreases, increases, and in-
creases, respectively. In addition, we proposed a formula for a non-
square domain that is close to a square domain and has an exact
periodicity.
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