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Abstract. We present a robust and accurate boundary condition for
pricing financial options that is a hybrid combination of the payoff-consis-
tent extrapolation and the Dirichlet boundary conditions. The payoff-
consistent extrapolation is an extrapolation which is based on the pay-
off profile. We apply the new hybrid boundary condition to the multi-
dimensional Black–Scholes equations with a high correlation. Correlation
terms in mixed derivatives make it more difficult to get stable numerical
solutions. However, the proposed new boundary treatments guarantee
the stability of the numerical solution with high correlation. To verify
the excellence of the new boundary condition, we have several numerical
tests such as higher dimensional problem and exotic option with nonlinear
payoff. The numerical results demonstrate the robustness and accuracy
of the proposed numerical scheme.

1. Introduction

Let si(t) ∈ R+, i = 1, 2, . . . , d denote the value of the i-th underlying asset
at time t and u(s, t) denote the price of an option, where s = (s1, s2, . . . , sd).
Then the option price follows the following generalized Black–Scholes (BS)
partial differential equation (PDE): For (s, t) ∈ R

d
+ × (0, T ),

(1)
∂u(s, t)

∂t
+

d
∑

i=1

rsi
∂u(s, t)

∂si
+

1

2

d
∑

i,j=1

ρijσiσjsisj
∂2u(s, t)

∂si∂sj
− ru(s, t) = 0
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with final condition u(s, T ) = Λ(s), where r is the constant riskless interest
rate, σi are volatilities of si, and ρij are the asset correlations between si and
sj . Λ(s) is the payoff function at maturity T [12]. There are three classical
techniques such as the finite difference method (FDM) [1, 13], the finite element
method [4, 8, 9], and the finite volume method [16] for the numerical solution
of the BS PDE. In this paper, we will focus on the FDM. When we solve
the multi-dimensional BS PDE, we typically treat the mixed derivative terms
having correlation coefficients explicitly because of the difficulty to solve them
implicitly. The value of the mixed derivative term ρijσiσjsisjusisj in Eq. (1)
is dependent on the values of correlation, volatilities, and underlying assets. In
order to achieve the stability of the numerical schemes, it is important to treat
the mixed derivative term appropriately because the large value of the mixed
derivative term severely restricts the numerical time step size and the numeri-
cal solution undergoes oscillation or blow-up unless we use small enough time
steps. The main purpose of this article is to propose a new robust numerical
boundary condition that is combination of the payoff-consistent extrapolation
and the Dirichlet boundary conditions. We apply the new boundary condition
to solving the multi-dimensional BS equations with high correlation values.

The contents of this paper are as follows. In Section 2, we describe the
solution algorithm, which is the operator splitting method. In Section 2.2, we
propose a new numerical method which is based on a payoff-consistent extrap-
olation and the Dirichlet boundary conditions. We present several numerical
experiments to show the robustness and accuracy of the proposed numerical
method in Section 3. Finally, conclusions are drawn in Section 4.

2. Numerical solution

In this section, we describe the discretization, the operator splitting scheme,
and the payoff-consistent extrapolation and the Dirichlet boundary condition.

2.1. Discretization

The two-dimensional version of Eq. (1) can be written as

∂u

∂τ
= LBSu for (x, y, τ) ∈ Ω× (0, T ],(2)

where τ = T − t and LBSu = 0.5σ2
1x

2uxx+0.5σ2
2y

2uyy + ρσ1σ2xyuxy + rxux +
ryuy − ru. Equation (2) is defined in Ω× (0, T ] = {(x, y, t) | x > 0, y > 0, τ ∈
(0, T ]}. However, we need a finite domain to solve Eq. (2) by using a FDM.
Let us discretize the computational domain Ω = (0, L)× (0,M) with a uniform
space step h = L/Nx = M/Ny and a time step ∆τ = T/Nτ . Here, Nx, Ny, and
Nτ are the number of grid points in the x-, y-, and τ -direction, respectively.
Let us introduce the notation un

ij ≡ u(xi, yj, τ
n) = u (ih, jh, n∆τ) , where

i = 0, . . . , Nx, j = 0, . . . , Ny, and n = 0, . . . , Nτ . In Fig. 1, the marked dots
denote the boundary points.
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Figure 1. Discrete computational domain with marked
boundary points.

We use the operator splitting (OS) method [2, 7, 15] to solve Eq. (2):

u
n+ 1

2

ij − un
ij

∆τ
= Lx

OSu
n+ 1

2

ij ,(3)

un+1
ij − u

n+ 1

2

ij

∆τ
= Ly

OSu
n+1
ij ,(4)

where the discrete difference operators Lx
OS and Ly

OS are defined by

Lx
OSu

n+ 1

2

ij =
(σ1xi)

2

2

u
n+ 1

2

i−1,j − 2u
n+ 1

2

ij + u
n+ 1

2

i+1,j

h2
+ rxi

u
n+ 1

2

i+1,j − u
n+ 1

2

i−1,j

2h
− r

2
u
n+ 1

2

ij

+
1

2
σ1σ2ρxiyj

un
i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2
,(5)

Ly
OSu

n+1
ij =

(σ2yj)
2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2
+ ryj

un+1
i,j+1 − un+1

i,j−1

2h
− r

2
un+1
ij

+
1

2
σ1σ2ρxiyj

u
n+ 1

2

i+1,j+1 + u
n+ 1

2

i−1,j−1 − u
n+ 1

2

i−1,j+1 − u
n+ 1

2

i+1,j−1

4h2
.(6)

If we add Eqs. (3) and (4), then we have

(7)
un+1
ij − un

ij

∆τ
= Lx

OSu
n+ 1

2

ij + Ly
OSu

n+1
ij .

The solution algorithm using the OS method is as follows: First, we rewrite

Eq. (3) as αiu
n+ 1

2

i−1j + βiu
n+ 1

2

ij + γiu
n+ 1

2

i+1j = fij , where

αi = −σ2
1x

2
i

2h2
+

rxi

2h
, βi =

1

∆τ
+

σ2
1x

2
i

h2
+

r

2
, γi = −σ2

1x
2
i

2h2
− rxi

2h
,

fij =
1

2
ρσ1σ2xiyj

un
i+1,j+1 − un

i+1,j−1 − un
i−1,j+1 + un

i−1,j−1

4h2
+

un
ij

∆τ
.
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Here the boundary values are obtained from a payoff-consistent extrapolation,
which will be explained later. Then the system of discrete equation can be
rewritten as















β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNx−2 βNx−2 γNx−2

0 . . . 0 αNx−1 βNx−1

































u
n+ 1

2

1,j

u
n+ 1

2

2,j
...

u
n+ 1

2

Nx−2,j

u
n+ 1

2

Nx−1,j



















=















f∗
1,j

f2,j
...

fNx−2,j

f∗
Nx−1,j















,

where f∗
1,j=f1,j − α1u

n
0,j and f∗

Nx−1,j=fNx−1,j − γNx−1u
n
Nx,j

. We solve the
discrete system of equations by using the Thomas algorithm. Next, we rewrite
Eq. (4) as αju

n+1
ij−1 + βju

n+1
ij + γju

n+1
ij+1 = gij , where

αj = −
σ2
2y

2
j

2h2
+

ryj
2h

, βj =
1

∆τ
+

σ2
2y

2
j

h2
+

r

2
, γj = −

σ2
2y

2
j

2h2
− ryj

h
,

gij =
1

2
σ1σ2ρxiyj

u
n+ 1

2

i+1,j+1 + u
n+ 1

2

i−1,j−1 − u
n+ 1

2

i−1,j+1 − u
n+ 1

2

i+1,j−1

4h2
+

u
n+ 1

2

ij

∆τ
.

We have














β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNy−2 βNy−2 γNy−2

0 . . . 0 αNy−1 βNy−1































un+1
i,1

un+1
i,2
...

un+1
i,Ny−2

un+1
i,Ny−1

















=















g∗i,1
gi,2
...

gi,Ny−2

g∗i,Ny−1















,

where g∗i,1=gi,1 − α1u
n+ 1

2

i,0 and g∗i,Ny−1=gi,Ny−1 − γNy−1u
n+ 1

2

i,Ny
.

2.2. Payoff-consistent and Dirichlet boundary condition

In this section, we describe the proposed new hybrid boundary condition in
detail. For easy explanation, we consider a vanilla call option. As shown in
Fig. 2, the payoff of the option on Ω = (0, L)× (0, L) is given as

Λ(x, y) = max{x−K, y −K, 0}.(8)

First, we consider the conventional linear boundary condition which is mostly
used in financial engineering. Linear boundary condition is defined that the
second derivative of the solution across a boundary is zero [10]. For example, at
x = L we have un

Nx,j
= 2un

Nx−1,j −un
Nx−2,j for j = 1, . . . , Ny − 1. Next, we con-

sider a new hybrid boundary condition that is based on the payoff-consistent
extrapolation and the Dirichlet boundary conditions. For example, at x = L we
use the common linear boundary condition, i.e., un

Nx,j
= 2un

Nx−1,j−un
Nx−2,j for

j = 0, . . . , Ny − 2. However, if we apply the linear extrapolation at j = Ny − 1,
then we have u0

Nx,Ny−1 = 2u0
Nx−1,Ny−1 − u0

Nx−2,Ny−1 = u0
Nx−1,Ny−1 = L −
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Figure 2. European call option payoff on the maximum of
two assets. Here, K = 100 and L = 200.

K − h 6= Λ(L,L − h) = L − K. To correct this discrepancy, we propose the
payoff-consistent extrapolation as the following stencil of the extrapolation:
un
Nx,Ny−1 = 2un

Nx−1,Ny−2 − un
Nx−2,Ny−3, which is consistent with the payoff

function when n = 0, i.e., u0
Nx,Ny−1 = 2u0

Nx−1,Ny−2 − u0
Nx−2,Ny−3 = L −K =

Λ(L,L− h). Similarly, we apply the payoff-consistent extrapolation at un
Nx,Ny

and un
Nx−1,Ny

. When we solve Eq. (3), we use the boundary values from the

payoff-consistent extrapolation at the time level n. Likewise, for Eq. (4), we
use the boundary values from the time level n+ 1

2 . To highlight the effect of the
proposed payoff-consistent extrapolation, let us consider the following mixed
derivative term in the BS equation:

ρσ1σ2xy
∂2u

∂x∂y
.(9)

Let us compute the discrete approximations of Eq. (9) at (xNx−1, yNy−1) using
the conventional linear extrapolation and the proposed stencils as shown in
Figs. 3(a) and (b), respectively.

Using the linear boundary extrapolation, we have
(

∂2u

∂x∂y

)0

Nx−1,Ny−1

=
u0
Nx,Ny

+ u0
Nx−2,Ny−2 − u0

Nx,Ny−2 − u0
Nx−2,Ny

4h2

=
(L−K − 2h) + (L−K − 2h)− (L −K)− (L−K)

4h2

= − 1

h
.

On the other hand, using the proposed stencil, we have
(

∂2u

∂x∂y

)0

Nx−1,Ny−1

=
u0
Nx,Ny

+ u0
Nx−2,Ny−2 − u0

Nx,Ny−2 − u0
Nx−2,Ny

4h2

=
(L −K) + (L−K − 2h)− (L−K)− (L−K)

4h2
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(a)

(b)

Figure 3. Schematic of (a) conventional linear and (b) new
hybrid extrapolations for finding boundary points.

= − 1

2h
,

which is consistent with the value obtained from using the payoff function at
the boundary points. This consistent value is important because the coefficient
of the mixed derivative term is large, i.e., ρσ1σ2L

2.

2.3. Extension to a three-dimensional problem

In this section, we consider a three-dimensional discretized Black–Scholes
problem:

(10)
un+1
ijk − un

ijk

∆τ
= (Lx

BSu)
n+ 1

3

ijk + (Ly
BSu)

n+ 2

3

ijk + (Lz
BSu)

n+1
ijk ,

where the discrete difference operators Lx
BS , L

y
BS , and Lz

BS are defined by

(Lx
BSu)

n+ 1

3

ijk =
(σxxi)

2

2
Dxxu

n+ 1

3

ijk + rxiDxu
n+ 1

3

ijk +
1

3
σxσyρxyxiyjDxyu

n
ijk

+
1

3
σyσzρyzyjzkDyzu

n
ijk +

1

3
σzσxρzxzkxiDzxu

n
ijk − 1

3
ru

n+ 1

3

ijk ,

(Ly
BSu)

n+ 2

3

ijk =
(σyyj)

2

2
Dyyu

n+ 2

3

ijk + ryjDyu
n+ 2

3

ijk +
1

3
σxσyρxyxiyjDxyu

n+ 1

3

ijk
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+
1

3
σyσzρyzyjzkDyzu

n+ 1

3

ijk +
1

3
σzσxρzxzkxiDzxu

n+ 1

3

ijk − 1

3
ru

n+ 2

3

ijk ,

(Lz
BSu)

n+1
ijk =

(σzzk)
2

2
Dzzu

n+1
ijk + rzkDzu

n+1
ijk +

1

3
σxσyρxyxiyjDxyu

n+ 2

3

ijk

+
1

3
σyσzρyzyjzkDyzu

n+ 2

3

ijk +
1

3
σzσxρzxzkxiDzxu

n+ 2

3

ijk − 1

3
run+1

ijk .

For the discretization of the space variables in Eq. (10), we employ the
following difference equations:

Dxuijk =
ui+1,jk − ui−1,jk

2h
, Dxxuijk =

ui−1,jk − 2uijk + ui+1,jk

h2
,

Dxyuijk =
ui+1,j+1,k − ui−1,j+1,k − ui+1,j−1,k + ui−1,j−1,k

4h2
.

Then, OS method consists of the following three discrete equations

u
n+ 1

3

ijk − un
ijk

∆τ
= (Lx

BSu)
n+ 1

3

ijk ,(11)

u
n+ 2

3

ijk − u
n+ 1

3

ijk

∆τ
= (Ly

BSu)
n+ 2

3

ijk ,(12)

un+1
ijk − u

n+ 2

3

ijk

∆τ
= (Lz

BSu)
n+1
ijk .(13)

To condense the discussion, we only describe the numerical solution algo-
rithm to solve Eq. (11). Discrete Eqs. (12) and (13) are similarly solved. Given
un
ijk, Eq. (11) is rewritten as follows:

(14) αiu
n+ 1

3

i−1,jk + βiu
n+ 1

3

ijk + γiu
n+ 1

3

i+1,jk = fijk for i = 1, . . . , Nx − 1,

where

αi = − (σxxi)
2

2h2
+

rxi

2h
, βi =

(σxxi)
2

h2
+

r

3
+

1

∆τ
, γi = − (σxxi)

2

2h2
− rxi

2h
,

fijk =
1

3
σxσyρxyxiyjDxyu

n
ijk +

1

3
σyσzρyzyjzkDyzu

n
ijk

+
1

3
σxσzρzxxizkDzxu

n
ijk − 1

∆τ
un
ijk.

For fixed index j and k, we solve the following tridiagonal system















β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNx−2 βNx−2 γNx−2

0 . . . 0 αNx−1 βNx−1



































u
n+ 1

3

1,jk

u
n+ 1

3

2,jk
...

u
n+ 1

3

Nx−2,jk

u
n+ 1

3

Nx−1,jk





















=















f∗
1,jk

f2,jk
...

fNx−2,jk

f∗
Nx−1,jk















,
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where f∗
1,jk=f1,jk − α1u

n
0,jk and f∗

Nx−1,jk=fNx−1,jk − γNx−1u
n
Nx,jk

. We solve
the discrete system of equations by using the Thomas algorithm. By the new
hybrid boundary method, we impose the following condition at boundary:

u0,jk = 2u1,jk − u2,jk, uNx,jk = 2uNx−1,jk − uNx−2,jk,

uNx,j,Nz
= 2uNx−1,j,Nz−1 − uNx−2,j,Nz−2,

uNx−1,j,Nz
= 2uNx−2,j,Nz−1 − uNx−3,j,Nz−2,

uNx,j,Nz−1 = 2uNx−1,j,Nz−2 − uNx−2,j,Nz−3.

The other boundaries are similarly defined.

3. Numerical experiments

In this section, we present the numerical results to compare the performances
using two different boundary conditions. All computations were performed
using MATLAB version 7.6 [11]. The error of the numerical solution is defined
as eij = ue

ij − uij , where ue
ij is the exact solution and uij is the numerical

solution. To compare the errors of different methods, we compute the root
mean square error (RMSE) on an interested region. The RMSE is defined as

RMSE =

√

√

√

√

1

N

N
∑

(xi,yj)∈Ω0

e2ij ,

where N is the number of points on the gray region as shown in Fig. 4 and the
region indicates a neighborhood, Ω0 = [0.7X1, 1.3X1] × [0.7X2, 1.3X2], of the
exercise prices X1 and X2.

y

xX10.7X1 1.3X1

X2

0.7X2

1.3X2

Figure 4. RMSE is calculated on the gray region.

In all numerical tests, unless otherwise specified, we use the following pa-
rameters: r = 0.03, σ1 = σ2 = 0.3, and T = 1 on the computational domain
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Ω = [0, L]× [0, L]. The closed-form solution [5] for option value with the payoff
Eq. (8) is given by

u(x, y, T ) = xe−rTM(d1, d; ρ1) + ye−rTM(d2,−d+ σ
√
T ; ρ2)

−Xe−rT [1−M(−d1 + σ1

√
T , d2 + σ2

√
T ; ρ)],(15)

where

d =
ln(x/y) + σ2T/2

σ
√
T

, d1 =
ln(x/X) + σ2

1T/2

σ1

√
T

, d2 =
ln(y/X) + σ2

2T/2

σ2

√
T

,

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2, ρ1 = (σ1 − ρσ2)/σ, and ρ2 = (σ2 − ρσ1)/σ.

In Eq. (15), M(a, b; ρ) is the standard cumulative normal distribution function
as

(16) M(a, b; ρ) =
1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

[

−x2 − 2ρxy + y2

2(1− ρ2)

]

dx dy.

The following is a MATLAB code for the closed-form solution (15):

% Call option on the maximum of two assets
clear;sigma1=0.3;sigma2=0.3;r=0.03;rho=0.5;T=0.5;X=100;L=300;M=300;Nx=31;Ny=31;
sig=sqrt(sigma1^2+sigma2^2-2*rho*sigma1*sigma2);rho1=(sigma1-rho*sigma2)/sig;

rho2=(sigma2-rho*sigma1)/sig;x=linspace(0,L,Nx+1);y=linspace(0,M,Ny+1);
for i=1:Nx+1

for j=1:Ny+1
d=(log(x(i)/y(j))+0.5*sig^2*T)/(sig*sqrt(T));
d1=(log(x(i)/X)+0.5*sigma1^2*T)/(sigma1*sqrt(T));

d2=(log(y(j)/X)+0.5*sigma2^2*T)/(sigma2*sqrt(T));
V(i,j)=x(i)*mvncdf([d1 d],[0 0],[1 rho1; rho1 1]) ...

+y(j)*mvncdf([d2 -d+sig*sqrt(T)],[0 0],[1 rho2; rho2 1]) ...
-X*exp(-r*T)*(1-mvncdf([-d1+sigma1*sqrt(T) ...

-d2+sigma2*sqrt(T)],[0 0],[1 rho; rho 1]));
end

end V(1,1)=0; surf(x,y,V)

Table 1 shows RMSE on Ω0 = [0.7X1, 1.3X1] × [0.7X2, 1.3X2] with various
values of L, ρ, ∆τ , and h. As shown in Table 1, RMSEs with the conventional
linear boundary condition are relatively bigger than those with the new hybrid
boundary condition. Especially, with our proposed hybrid scheme we have
the significantly smaller RMSEs compared to the conventional linear boundary
condition under the high correlation and smaller domain size (see the column
of L = 160 and ρ = 0.8).

Table 2 shows option values at the point (x, y) = (100, 100) with various
values of L, ρ, ∆τ , and h. The values inside the parenthesis are the closed-
form solutions. We can observe that the hybrid scheme is more accurate when
correlation is high and domain size is small (see the column of L = 160 and
ρ = 0.8).

Figure 5 shows numerical results at time T = 1 with (a) ρ = 0.2, (b)
ρ = 0.5, and (c) ρ = 0.8. The first, second, and third rows are from closed-form
solution, conventional linear boundary, and new hybrid boundary conditions
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Table 1. RMSE on Ω0 = [0.7X1, 1.3X1]×[0.7X2, 1.3X2] with
various values of L, ρ, ∆τ , and h.

L = 160 L = 300

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

Conventional linear boundary condition
∆τ h

1/180 2 2.3930545 5.8624586 15.3996467 0.0422851 0.0409698 0.0612859
1/360 1 2.2371132 5.9692506 18.3127686 0.0501792 0.0477070 0.0763009
1/720 0.5 2.1712868 6.2847185 22.6034383 0.0530512 0.0501025 0.1011170

New hybrid boundary condition
∆τ h

1/180 2 1.2460393 1.2238070 0.9422444 0.0413479 0.0406781 0.0420729
1/360 1 1.2936015 1.2443000 0.9134185 0.0491920 0.0478605 0.0474969
1/720 0.5 1.3589632 1.3003881 0.9505281 0.0520435 0.0505581 0.0495902

Table 2. Option values at the point (x, y) = (100, 100) with
various values of L, ρ, ∆τ , and h.

L = 160 L = 300

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

(22.08152) (20.28972) (17.73092) (22.08152) (20.28972) (17.73092)

Conventional linear boundary condition
∆τ h

1/180 2 21.37668 17.94798 10.18170 22.12432 20.33081 17.77331
1/360 1 21.43003 17.87647 8.55308 22.13635 20.34217 17.77218
1/720 0.5 21.45117 17.72268 6.21900 22.14078 20.34659 17.76964

New hybrid boundary condition
∆τ h

1/180 2 21.66787 19.80599 17.34698 22.12405 20.33106 17.78158
1/360 1 21.65211 19.80128 17.35894 22.13609 20.34248 17.78379
1/720 0.5 21.62693 19.77727 17.33704 22.14052 20.34700 17.78652

with ∆τ = 1/360, h = 1, respectively. Throughout these results, we can see
that the results by the new hybrid extrapolation at boundary are more robust
than the conventional linear extrapolation.

3.1. Three-dimensional call option on max

In this section, we compare numerical results of the three-dimensional vanilla
call option problem with two different boundary conditions. Note that the
approach of new hybrid boundary is mentioned in Sec. 2.3. For numerical test,
we use the following parameters σ1 = σ2 = σ3 = 0.3, ρ12 = ρ23 = ρ31 = ρ,
r = 0.03, T = 1/6, X1 = X2 = X3 = 100, L = 200 on Ω = [0, L]3. Table
3 shows option values at the position (x, y, z) = (100, 100, 100) with different
values of h, ∆τ , and ρ. Error, which is defined as the absolute value of difference
between numerical and exact solutions, is represented in parentheses.
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Figure 5. Numerical results at time T = 1 with (a) ρ = 0.2,
(b) ρ = 0.5, and (c) ρ = 0.8. The first, second, and third rows
are from closed-form solution, conventional linear boundary,
and new hybrid boundary conditions with ∆τ = 1/360, h = 1,
respectively.

Table 3. Three-dimensional call option values and errors at
the point (x, y, z) = (100, 100, 100) with various values of h,
∆τ , and ρ. Here, error is represented in parentheses.

Conventional linear BC New hybrid BC Exact solution

(ρ = 0.2)
∆τ h

1/180 2 27.847160 (0.7649) 27.861416 (0.7506)
1/360 1 28.184661 (0.4273) 28.188749 (0.4233) 28.612055

(ρ = 0.5)
∆τ h

1/180 2 24.326417 (0.7856) 24.230621 (0.8814)
1/360 1 24.903289 (0.2088) 24.599627 (0.5124) 25.112060

(ρ = 0.8)
∆τ h

1/180 2 27.432632 ( 6.9115) 19.353496 (1.1677)
1/360 1 38.654425 (18.1332) 19.849670 (0.6715) 20.521182

As shown in Table 3, the agreement between the numerical results with
hybrid boundary and the analytic exact solutions appears good. However, the
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results with conventional linear boundary are not good as ρ is large. Therefore,
we can confirm that the results with new hybrid boundary condition are more
accurate than those with conventional linear boundary condition.

3.2. Powered call option

Finally, we consider a powered option whose price follows the following single
asset BS PDE: For (x, τ) ∈ R+ × (0, T ),

(17)
∂u(x, τ)

∂τ
= rx

∂u(x, τ)

∂x
+

1

2
σ2x2 ∂

2u(x, τ)

∂x2
− ru(x, τ).

The payoff function Λ(x) at maturity T is Λ(x) = max{x − K, 0}p, where
p ∈ R+ is a power [5]. The closed-form solution [3, 6, 14] of the powered option
is given by

(18) u(x, τ) =

p
∑

j=0

p!

j!(p− j)!
xp−j(−K)je(p−j−1)(r+(p−j)σ2/2)τN(dp,j),

where N(dp,j) = 1√
2π

∫ dp,j

−∞ e−0.5s2 ds is the cumulative distribution function

for the normal distribution, dp,j = [ln(x/K) + (r + (p − j − 0.5)σ2)τ ]/(σ
√
τ).

In this example, we choose p = 2 and then for the boundary condition, we take
uNx = uNx−3−3uNx−2+3uNx−1, which comes from the quadratic polynomial
approximation at the boundary. This is the payoff-consistent extrapolation,
i.e., Λ(xNx

) = uNx−3 − 3uNx−2 + 3uNx−1.
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Figure 6. Numerical results with conventional linear and new
hybrid boundary condition for a powered call option.

Figure 6 shows numerical results with conventional linear and hybrid bound-
ary conditions with h = 1,∆τ = 1/3600, σ = 0.3, r = 0.03, L = 150, and
K = 100. In this test, we obtain two numerical values from conventional linear
and new hybrid boundary conditions at x = 100 as ulinear(100) = 534.590510
and uhybrid(100) = 675.032810, respectively. For comparison, we compute the
analytic solution uexact(100) = 676.758118 from Eq. (18). The relative percent
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error of ulinear is |ulinear(100)−uexact(100)|/uexact(100)×100% = 21.007%. And
the relative percent error of uhybrid is |uhybrid(100)−uexact(100)|/uexact(100)×
100% = 0.255%. By these results, we can confirm that the numerical re-
sults from new hybrid boundary condition are more accurate than those from
conventional linear boundary condition. Also, these results indicate that the
consideration of payoff is important to determine proper boundary conditions.

4. Conclusion

In this paper, we proposed a new concept for numerical treatments of bound-
ary condition, i.e., a payoff-consistent extrapolation, which is an extrapolation
consistent with the given payoff function. The new method is a hybrid com-
bination of payoff-consistent extrapolation and the Dirichlet boundary condi-
tions. The most popular conventional linear boundary condition has draw-
back that generates the bad results at boundary when the high correlation in
multi-dimensional problem or option problem with a nonlinear payoff. How-
ever, the proposed new hybrid boundary condition is efficient to treat the these
problems because this method takes into account of the given payoff function
profile. To show the superiority of the hybrid boundary condition, we have sev-
eral numerical tests such as two-, three-dimensional call options on max and
one-dimensional powered option. The numerical results demonstrated that the
proposed numerical scheme is more accurate and robust than the conventional
linear boundary condition. As the future work, we suggest the applications of
the proposed hybrid boundary condition using nonuniform grids.
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