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a b s t r a c t

We propose the application of a phase-field framework for three-dimensional volume reconstruction using

slice data. The proposed method is based on the Allen–Cahn and Cahn–Hilliard equations, and the algorithm

consists of two steps. First, we perform image segmentation on the given raw data using a modified Allen–

Cahn equation. Second, we reconstruct a three-dimensional volume using a modified Cahn–Hilliard equation.

In the modified Cahn–Hilliard equation, a fidelity term is introduced to keep the solution close to the slice

data. The numerical methods use a hybrid method and an unconditionally stable nonlinear splitting scheme.

The resulting discrete equations are solved using a multigrid method. The experiments on synthetic and real

medical images are performed to demonstrate the accuracy and efficiency of the proposed method.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Developing reconstruction algorithms attracts a significant

mount of attention because the three-dimensional (3D) volume

econstruction from a sequence of medical images has numerous

pplications such as medical diagnostic, plastic and artificial limb

urgery, virtual surgery system, anatomy teaching, and treatment

lanning [2,3]. Various algorithms have been proposed to reconstruct

surface or volume from a set of planar cross-sections. A method

hich combines the elastic interpolation algorithm, spline theory,

nd surface consistency theorem was proposed for reconstructing a

mooth 3D object from serial cross sections [4]. Guo et al. presented

morphology-based mathematical method to implement the inter-

olation by means of a combined operation of weighted dilation and

rosion [5]. Jones and Chen constructed surfaces from cross sections

sing a field function in each slice and the marching cubes algorithm

o generate a surface consisting of polygonal facets [6]. In shape-

ased interpolation method, the signed distance value of a voxel to

he edges of a cross section is calculated. After each slice has been as-

igned the distance values, distances for other slices are defined using
� This paper has been recommended for acceptance by Alejandro F. Frangi.
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n interpolation. Then, the volume is obtained by the zero isosurface

7]. For other approaches to 3D reconstruction, refer to [8–11].

In this paper, we present a phase-field framework for 3D vol-

me reconstruction using slice data. The proposed algorithm has two

teps: image segmentation and 3D reconstruction using two partial

ifferential equations, which are the modified Allen–Cahn and Cahn–

illiard equations. This paper is organized as follows. In Section 2,

e describe the governing equations for the image segmentation

nd volume reconstruction. Section 3 describes a practically stabi-

ized nonlinear splitting scheme for the volume reconstruction and

resents a multigrid method. In Section 4, we perform numerical ex-

eriments with synthetic and real medical images. Finally, our con-

lusion is given in Section 5.

. Reconstruction process

In this section, we propose a numerical algorithm for 3D vol-

me reconstruction from slice data. We start with an illustration of

he process of the proposed algorithm when we have a set of cross-

ectional slice data (Fig. 1(a)).

For the first stage, by using a modified Allen–Cahn equation, the

mage segmentation algorithm is applied for the given slice data f to

btain the phase-field function ψ (segmented image). Fig. 1(b) shows

he filled contour plots of segmented slice data ψ . For the second

tage, by using a modified Cahn–Hilliard equation and the segmented

lice data, we reconstruct the volume (Fig. 1(c)).

http://dx.doi.org/10.1016/j.cviu.2015.02.001
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Fig. 1. Volume reconstruction from slice data: (a) given slice data, (b) filled contour plots of segmented slice data, and (c) iso-surface of the reconstructed volume.

)

w

a

a

c

i

c

y

s

i

p

n

c

2.1. Image segmentation: modified Allen–Cahn equation

Since the original image may have noises (Fig. 2(a) and (b)), to
prepare the numerical slice data ψ (Fig. 2(c)) before applying the pro-
posed method for volume reconstruction, we use an image segmen-
tation algorithm [12–18]. The method we use for image segmenta-
tion is based on the Allen–Cahn equation and it enforces the diffuse
interface to be the hyperbolic tangent profile. The geometric active
contour model based on the mean curvature motion is given by the
following evolution equation [14]:

∂ψ(x, t)

∂t
= g( f0(x))

(
− F ′(ψ(x, t))

∈2
+ �ψ(x, t)

)
+ βg( f0(x))F (ψ(x, t)),

(1
Fig. 2. Image segmentation process of the given slice data: (a) given medical image, (b) me

image segmentation, in which the curves are the zero contours of ψ(x, y, t).
here x = (x, y) and f0(x) = ( f (x) − fmin)/( fmax − fmin). Here, fmax

nd fmin are the maximum and minimum values of the given slice im-

ge f (x), respectively. Here, ψ(x, t) is a phase-field function which is

lose to 1 or −1. The function g( f0(x)) = 1/[1 + |∇(Gσ ∗ f0)(x)|2]

s the edge-stopping function, which stops the evolution when the

ontour reaches the edge. The function (Gσ ∗ f0)(x) = ∫
� Gσ (x −

) f0(y)dy is the convolution of the given image f0 with the Gaus-

ian function Gσ (x) = 1
2πσ 2 e

− x2+y2

2σ2 . Here, F (φ) = 0.25(φ2 − 1)
2
, ∈

s a constant that is related to the phase transition width, and β is a

arameter. In this paper, we use σ = 1.5 and β = 50, 000.

We apply a hybrid method [14] to solve Eq. (1) and we outline the

umerical solution algorithm for the sake of completeness. We dis-

retize Eq. (1) in � = (a, b) × (c, d). Let Nx and Ny be positive even
sh plot of the given image, (c) mesh plot of the final result, and (d)–(f) evolutions of
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Fig. 3. Schematic of slice data.
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and the references therein.

F

i

ntegers, h = (b − a)/Nx = (d − c)/Ny be the uniform mesh size. Let
n
i j

be approximations of ψ(xi, y j, n�t), where xi = a + (i − 0.5)h,

j = ( j − 0.5)h, and �t is the time step. The discrete edge function

s defined by

( f0)i j = 1

1 + (Gσ ∗ f0)
2
x,i j + (Gσ ∗ f0)

2
y,i j

,

here (Gσ ∗ f0)x,i j = [(Gσ ∗ f0)i+1, j − (Gσ ∗ f0)i−1, j]/(2h) and

(Gσ ∗ f0)y,i j = [(Gσ ∗ f0)i, j+1 − (Gσ ∗ f0)i, j−1]/(2h). The discrete

onvolution is defined as

(Gσ ∗ f0)i j =
i+1∑

p=i−1

j+1∑
q= j−1

f0 pq

2πσ 2
e− [(i−p)2+( j−q)2]h2

2σ2 .

he zero Neumann boundary condition is used. Then the following

perator splitting numerical algorithm for Eq. (1) is as follows:

ψ∗
i j

− ψn
i j

�t
= gi j�dψ

∗
i j + βgi jF (ψn

i j), (2)

hich is solved by a multigrid method [1]. Here �d is the standard

ve point discrete Laplacian operator. Next, using the method of sep-

ration of variables we analytically solve the equation

t = g
ψ − ψ3

∈2
, (3)

ith the condition ψn = ψ∗. Then the solution of Eq. (3) at t = (n +
)�t is given as

n+1
i j

= ψ∗
i j/

√
e

− 2gi j�t

∈2 + (ψ∗
i j
)

2
(

1 − e
− 2gi j�t

∈2

)
.

Fig. 2 illustrates the process of image segmentation using Eq. (1).

or the given medical image in Fig. 2(a), we define the scaled image

f0(x) and initialize ψ(x, 0) as ψ(x, 0) = 1 if x is inside the square

ontour, ψ(x, 0) = −1 otherwise (see Fig. 2(d)). In Fig. 2(e) and (f),

he initial contour evolves until it reaches the boundary of the image

hrough the motion created by the mean curvature (the first term)

nd the second term on the right-hand side of Eq. (1). The term

g( f0(x))F (ψ(x, t)) evolves the contour beyond the non-convex and

isconnected regions.
ig. 4. Example of the image inpainting: (a) initial data (inpainting region in gray), (b) interm

npainting region is 30 grid points. Reprinted from Bertozzi et al. [22] with permission from S
.2. 3D reconstruction: Modified Cahn–Hilliard equation

In order to reconstruct a 3D volume from a set of segmented slice
ata, we consider the modified Cahn–Hilliard equation which con-
ains a fidelity term:

∂φ(x, t)

∂t
= �μ(x, t) + λ(x)(ψ(x) − φ(x, t)), x ∈ �, 0 < t ≤ T,

(4)

(x, t) = F ′(φ(x, t)) − ∈2�φ(x, t), (5)

here x = (x, y, z), � = (0, Lx) × (0, Ly) × (0, Lz) is a domain, and

(x) =
{

λ0, if x is in the given slice data,

0, otherwise.

ere, φ(x, t) is a phase-field function which is close to 1 or −1 for the

econstructed volume’s respective interior and exterior. The surface

f the volume is represented by the zero-level set of φ. Let ψ(x, y, zi)

or i = 1, . . . , Ns be the segmented slice data obtained by performing

he image segmentation algorithm on Si := � ∩ {z = zi}, where z1 =
and zNs

= Lz. Here, Ns is the number of slice data. Fig. 3 shows the

lice data’s schematics.
To define the initial condition φ(x, 0), we use a linear interpola-

ion between two consecutive slices: We have

(x, y, θzi+1 + (1 − θ )zi) = θψ(x, y, zi+1) + (1 − θ )ψ(x, y, zi), (6)

or 0 ≤ θ ≤ 1 and i = 1, . . . , Ns − 1. Homogeneous Neumann bound-

ry conditions for both φ and μ are applied: n · ∇φ = n · ∇μ = 0 on

� except z = z1 and z = zNs
, where Dirichlet boundary condition for

is applied. Let us consider the following total energy functional:

(φ) = ECH(φ) + EF (φ), (7)

here

CH(φ) =
∫
�

[
F (φ(x, t)) + ∈2

2
|∇φ(x, t)|2

]
dx, (8)

F (φ) =
Ns∑

i=1

∫
Si

λ0

2
(ψ(x) − φ(x, t))

2
dxdy. (9)

hen, the first term and second term in Eq. (4) are negative gradient

escents with respect to the H−1 and L2 inner products for the en-

rgies ECH and EF , respectively [19]. It should be pointed that Eq. (4)

s neither a gradient flow in H−1 nor L2. If λ0 = 0, then Eqs. (4) and

5) become the Cahn–Hilliard equation [20], which has been widely

mployed as a useful mathematical model in order to understand

he phase separation phenomena observed when binary alloys are

uenched at critical temperatures. For physical, mathematical, and

umerical derivations of the binary Cahn–Hilliard equation, see [21]
ediate state, and (c) steady state. Image domain is 128 × 128 and gap distance of the

ociety for Industrial and Applied Mathematics.
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(a) (b) (c)

(d) (e)
Fig. 5. Basic mechanism of the proposed algorithm: (a) mesh grid with initial data, (b) processed slice data, (c) initial guess obtained using a linear interpolation, (d) zero-filled

contour of φ at t = 0, and (e) zero-filled contour at a steady state after 36 iterations.

(a) (b) (c) (d)
Fig. 6. Accuracy test for our proposed method: top row shows zero-isosurfaces of numerical solution and bottom row displays comparison between the numerical (solid) and

reference (circle) solutions at plane y = 0.5.
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Eqs. (4) and (5) have also been used in image inpainting prob-

lem, which is the process of filling in missing parts of damaged im-

ages based on information from the surrounding areas [19]. The basic

mechanism of the inpainting model is illustrated in Fig. 4. The gray re-

gion in Fig. 4(a) denotes the inpainting region. Let ψ(x) be the image

data from Fig. 4(a). In the figure, black, gray, and white colors rep-

resent ψ(x) ≈ −1, 0, and 1, respectively. Take the initial condition as

φ(x, 0) = ψ(x) and solve Eqs. (4) and (5). Then outside the inpaint-

ing region, due to the fidelity term λ(x)(ψ(x) − φ(x, t)), the tempo-

ral evolution of φ(x, t) does not deviate much from the original im-

age data ψ(x). On the other hand, inside the inpainting region where

λ(x) = 0, the Cahn–Hilliard dynamics takes place. The gray value will

evolve to either −1 or 1 depending on the boundary values of the in-

painting region. Fig. 4(b) and (c) show the intermediate and steady

states, respectively. More details can be found in [19].
We use a nearly identical governing equation to those used for im-

ge inpainting, which is two-dimensional. However, we use the equa-

ion in a different context, meaning we reconstruct a 3D volume from

set of slice data. Our approach involves the salient application of the

artial differential equation used in image inpainting.

. Numerical solution

For the stable temporal discretization, we use the efficient nu-

erical scheme based on the unconditionally gradient stable scheme

23,24], which allows large time steps. We discretize the governing

quations, Eqs. (4) and (5), in our 3D space, � = (0, Lx) × (0, Ly) ×
(0, Lz). Let xi = (i − 0.5)h, y j = ( j − 0.5)h, zk = (k − 0.5)h, 1 ≤ i ≤

x, 1 ≤ j ≤ Ny, and 1 ≤ k ≤ Nz, where Nx, Ny, and Nz are positive
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Table 1

Discrete l2-norms of errors, ‖eh‖2.

Case Fig. 6(a) Fig. 6(b) Fig. 6(c) Fig. 6(d)

h = 1/64 1.410E−2 1.460E−2 1.501E−2 2.756E−2

h = 1/128 5.024E−3 5.041E−3 5.341E−3 8.976E−3
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Fig. 8. Steady solution for different interface dimension.
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ven integers and h = Lx/Nx = Ly/Ny = Lz/Nz is the uniform mesh size.

et xi jk = (xi, y j, zk) and let φn
i jk

be an approximation of φ(xi jk, n�t),

here �t = T/Nt is the time-step, T is the final time, and Nt is the

otal number of time-steps. Then the discrete domain is defined by

h = {xi jk|1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz}. In addition, we denote

he grid function as φh = {φi jk|xi jk ∈ �h} and discrete l2-norm of φh

s

φh‖2 =
√ ∑

xi jk∈�h

h3
(
φn

i jk

)2
. (10)

e then have the following discretization.

φn+1
i jk

− φn
i jk

�t
= λi jk(ψi jk − φn

i jk) +
μn+1

i+1, jk
+ μn+1

i−1, jk

h2

+
μn+1

i, j+1,k
+ μn+1

i, j−1,k
+ μn+1

i j,k+1
+ μn+1

i j,k−1
− 6μn+1

i jk

h2
, (11)

n+1
i jk

= (φn+1
i jk

)
3 − φn

i jk − ∈2
φn+1

i+1, jk
+ φn+1

i−1, jk

h2
− ∈2

×
φn+1

i, j+1,k
+ φn+1

i, j−1,k
+ φn+1

i j,k+1
+ φn+1

i j,k−1
− 6φn+1

i jk

h2
. (12)

he resulting discrete equations, Eqs. (11) and (12), are solved using

multigrid method. In order to condense the discussion, we describe

nly the relaxation step of this method. Let φn+1,m
i jk

and φn+1,m+1
i jk

be

he respective current and updated approximations of φn+1
i jk

. We set

he initial guess to be the previous time-step solution as φn+1,0
i jk

=
n
i jk

. We linearize (φn+1
i jk

)
3

as

(φn+1
i jk

)
3 ≈ (φn+1,m

i jk
)

3 + 3(φn+1,m
i jk

)
2
(φn+1

i jk
− φn+1,m

i jk
).

hen we apply the Gauss–Seidel relaxation to the multigrid method:

φn+1,m+1
i jk

�t
+

6μn+1,m+1
i jk

h2
=

φn
i jk

�t
+ λi jk(ψi jk − φn

i jk)

+
μn+1,m

i+1, jk
+ μn+1,m+1

i−1, jk
+ μn+1,m

i, j+1,k
+ μn+1,m+1

i, j−1,k
+ μn+1,m

i j,k+1
+ μn+1,m+1

i j,k−1

h2
,

−
(

6∈2

h2
+ 3(φn+1,m

i jk
)

2

)
φn+1,m+1

i jk
+ μn+1,m+1

i jk
= −2(φn+1,m

i jk
)

3

−φn
i jk − ∈2

φn+1,m
i+1, jk

+ φn+1,m+1
i−1, jk

+ φn+1,m
i, j+1,k

+ φn+1,m+1
i, j−1,k

+ φn+1,m
i j,k+1

+ φn+1,m+1
i j,k−1

h2
Fig. 7. Steady solutions for different pixel numbers.
or more details about the multigrid algorithm of a 3D Cahn–Hilliard

quation, please refer to [23]. It should be noted that without the fit-

ing term (Eq. (4) with λ0 = 0), the proposed scheme is an uncondi-

ionally gradient stable scheme [25].

. Numerical tests

In this section, we perform several numerical experiments in or-

er to demonstrate the performance of our proposed scheme. Across

he interfacial transition region, the phase-field function φ varies

rom −0.9 to 0.9 over a distance of approximately 2
√

2 ∈ tanh
−1(0.9)

f λ0 = 0. Therefore, if we want this distance to be approximately m

rid points, ∈ is defined as ∈m = hm/[2
√

2tanh
−1(0.9)] [21]. We re-

ard the numerical result as the steady state solution if the relative

rror ‖φn+1 − φn‖2
2/‖φn‖2

2 is less than a tolerance tol. Unless other-

ise specified, we use ∈= ∈4, time step �t = 0.5h, λ0 = 1000, and

ol = 0.002. Throughout the paper, we use isotropic grids and we ap-

ly the image segmentation step for the slice data unless we use the

nalytic hyperbolic tangent function.

.1. Basic mechanism of the algorithm

We start with an example in the two-dimensional (2D) space � =
(0, 1) × (0, 0.5) with a 64 × 32 mesh grid to show the algorithm’s

asic mechanism in Eqs. (4) and (5).
In Fig. 5(a), thick line segments are the given slices and

as following hyperbolic tangent profiles, which are shown in
ig. 5(b):

ψ(x, y0) = −1 + tanh[(x − 0.15)/(
√

2∈4)] − tanh[(x − 0.4)/(
√

2∈4)]

+ tanh[(x − 0.6)/(
√

2∈4)] − tanh[(x − 0.9)/(
√

2∈4)],

ψ(x, y11) = −1 + tanh[(x − 0.3)/(
√

2∈4)] − tanh[(x − 0.45)/(
√

2∈4)]

+ tanh[(x − 0.55)/(
√

2∈4)] − tanh[(x − 0.7)/(
√

2∈4)],

(x, y21) = −1 + tanh[(x − 0.4)/(
√

2∈4)] − tanh[(x − 0.65)/(
√

2∈4)],

(x, y33) = −1 + tanh[(x − 0.25)/(
√

2∈4)] − tanh[(x − 0.65)/(
√

2∈4)].
Here, only the bottom and top slices are used.
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Fig. 9. Image segmentation process of the given slice data: (a) given medical images with contours obtained by image segmentation overlayed, (b) mesh plots of the given image,

(c) mesh plots of the final result.

Fig. 10. (a) Synthetic slice data of a spiral (ordered left to right and top to bottom), (b) initial shape, and (c) reconstructed volume.

4

e

a

r

Because this is an example in 2D, we assume that the given slice

data has the hyperbolic tangent profile. However, in the 3D case, we

need an image segmentation algorithm as a preprocess before the

volume reconstruction. We guess the initial state using the liner in-

terpolation (see Fig. 5(c)), and the filled contour at level zero is shown

in Fig. 5(d). Fig. 5(e) displays the reconstructed image obtained by our

proposed method.
.2. Accuracy of the proposed method

In order to test the accuracy of our proposed method, we

xamine four synthetic functions whose surface and volume

re implicitly defined as zero-level and positive valued sets,

espectively:
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Fig. 11. (a) Synthetic slice data of two linked tori (ordered left to right and top to bottom), (b) initial shape, and (c) reconstructed volume.

Fig. 12. (a) Synthetic slice data of three branching (ordered left to right and top to bottom), (b) initial shape, and (c) reconstructed volume.

Fig. 13. Volume reconstructions for human head, brain, and terra-cotta bunny. (b) and (c) are results using half and quarter numbers of slice data from (a), respectively.



122 Y. Li et al. / Computer Vision and Image Understanding 137 (2015) 115–124

Table 2

List of original slice data information [26] and our slice data with NS and ITER refereing to the respective numbers of slices and iterations.

Case Image pixels NS NS between two data ITER

Human head Original data, 256 × 256 96 2

Fig. 13(a) top, 256 × 256 96 2 12

Fig. 13(b) top, 256 × 256 48 4 14

Fig. 13(c) top, 256 × 256 24 8 18

Human brain Original data, 256 × 256 108 2

Fig. 13(a) middle, 256 × 256 108 2 17

Fig. 13(b) middle, 256 × 256 54 4 22

Fig. 13(c) middle, 256 × 256 27 8 28

Bunny Original data, 512 × 512 360 2

Fig. 13(a) bottom, 256 × 256 180 2 8

Fig. 13(b) bottom, 256 × 256 90 4 11

Fig. 13(c) bottom, 256 × 256 45 8 18
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a

ψ(x) = tanh[(0.25 −
√

(x − 0.5)
2 + (y − 0.5)

2
)/(

√
2∈4)],

ψ(x) = tanh[(0.25 −
√

(x − 0.1z − 1)
2 + (y − 0.5)

2
)/(

√
2∈4)],

ψ(x) = tanh[(0.2 −
√

(x − 0.5)
2 + (y − 0.5)

2 + 0.1z)/(
√

2∈4)],

ψ(x) = tanh[(0.42 −
√

(x − 0.5)
2 + (y − 0.5)

2 + (z − 0.5)
2
)/(

√
2∈4)].

Using different mesh grids 64 × 64 × 64 and 128 × 128 × 128, we run

the evolution up to T = 0.024 with a time-step �t = 2h2. All tests are

performed in the unit cube domain � = (0, 1) × (0, 1) × (0, 1). We

obtain the slice data at z = z0, z5, . . . , zNz+1 using the given synthetic

function ψ(x). We define the error of a grid as eh = φh − ψh. In Fig. 6,

the top row shows the reconstructed volumes. These are compared

with the respective numerical and reference solutions at y = 0.5 in

the bottom row. The discrete l2-norms of errors are given in Table 1.

The numerical results agree with the theoretical values.

4.3. Effect of image pixel and interslice dimension

We perform simulations to show the effect of pixel dimension on

3D volume reconstruction with increasing pixel number, 16 × 16 × 8,

32 × 32 × 16, and 64 × 64 × 32. We set numerical parameters as ∈=
∈4, �t = 0.1h, and tol = 0.0001 on a domain � = (0, 1) × (0, 1) ×
(0, 0.5). The given slice data is a set of two circles whose radii are

same as r = 0.2 and centers are apart by d = 0.4. Fig. 7 shows the

steady solutions with different pixel numbers. We can see that, with

a few grid points, the reconstructed surface could not be connected,
Fig. 14. Volume reconstruction of human vertebra: (a) slice data (ordered left to right and

angles.
owever, with increasing pixel number, it is getting smooth and con-

ected.

We consider the effect of interslice dimension between two con-

ecutive slices. A 64 × 64 × 16 mesh grid is used and numerical pa-

ameters are set as ∈= ∈4, �t = 0.5h, and tol = 0.0001 on a domain

= (0, 1) × (0, 1) × (0, 0.25). The given slice data is a set of two

ircles which radii are same as r = 0.15 and centers are apart by

= 0.32, see Fig. 8(a). The reconstructed surface is not connected be-

ause the circles are not close enough comparing with the given inter-

lice. However, if we add a slice at z = z8, which has same radius and

s located in middle in two circles, then we have smoothly connected

urface as shown in Fig. 8(b).

.4. Image segmentation step

In this section, we show several numerical results of image seg-

entation step on real medical images of a bone in Fig. 9. From left to

ight columns, they are given medical images with contours obtained

y the image segmentation, mesh plots of the given images, and mesh

lots of the final results. As can be seen, even though the original im-

ges are with noises, the image segmentation step produces visually

lear results. We will use the image segmentation afterward, unless

therwise mentioned.

.5. Volume reconstructions using synthetic slice data

We reconstruct the 3D volume using the three set of more com-

licated synthetic slice data, consisting a spiral, two linked tori,

nd three branching. In this section, we use tol = 0.001. First, we
top to bottom) and (b) reconstructed volume of the human vertebra from different
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Fig. 15. Volume reconstruction from medical images of a human bone (tibia and fibula): (a) slice data (ordered left to right and top to bottom), in which empty boxes represent

skipped data, and (b) and (c) reconstructed volumes obtained from two different angels.
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onsider 3D spiral with twenty-seven slice data (Fig. 10(a)). We

ave five slices between any two consecutive slice data sets ex-

ept for one slice between the last two slice data sets. Fig. 10(b)

nd (c) exhibit the initial shape and final result obtained after 18

terations. A 128 × 128 × 128 mesh grid is used for the unit cube

omain � = (0, 1) × (0, 1) × (0, 1). Second, we consider two 3D

inked tori with twenty-four slice data (Fig. 11(a)). We have seven

lices between any two consecutive slice data sets except for four

lices between the last two given slices. A 128 × 128 × 160 mesh

rid is used for the domain � = (0, 1) × (0, 1) × (0, 1.25). Fig. 11(b)

nd (c) display the initial shape and final result obtained after 17

terations.

Third, we employ a similar test to that used in [4], where a more

omplex case of branching from one to three contours was tested us-

ng synthetic contours. Twelve slice data are used (Fig. 12(a)) and

here are two slices between any two consecutive slice data sets.

his simulation is performed on the domain (0, 1) × (0, 1.125) ×
(0, 0.531) with a 64 × 72 × 34 mesh grid. Fig. 12(b) and (c) are the

nitial shape by linear interpolation and final result obtained after

4 iterations.

.6. Volume reconstructions using real slice data

In this section, we simulate several volume reconstructions by us-

ng real slice data. Fig. 13 shows the reconstructed volumes such as

human head, brain, and terra-cotta bunny, whose slice data are ob-

ained from [26]. Each column in Fig. 13 shows the result of the vol-

me reconstruction using different interslice dimensions. The detail

nformation of the data we used is displayed in Table 2. This sim-

lation is performed on the domain (0, 1) × (0, 1) × (0, 1) with a

56 × 256 × 256 mesh grid. We can see that our proposed method

uccessfully manages this complex topology and the reconstructed

urface is very smooth. Furthermore, our method is working well

ith small set of slice data. And, Table 2 shows that the iteration num-

er for convergence slightly increase when the number of slice data

ecrease.

Next, we consider a human vertebra with a twenty-six slice data

rom [27] (Fig. 14(a)). There are two slices between any two given

uccessive slice data sets, except for the first and last sets, between

hich we use only one slice. This simulation is performed on the

omain (0, 1) × (0, 1) × (0, 0.45) with a 160 × 160 × 72 mesh grid.

ig. 14(b) and (c) represent the initial state by the linear interpo-

ation and final result obtained after 14 iterations. As can be seen,

ur proposed method produces visually clear results, even though

he contours are not convex and multiple links between contours are

xist.
Our last test examines the volume reconstruction from medical

mages of a human bone (tibia and fibula). We have a set of bone slice

mages with an image size of 216 × 216 (Fig. 15(a)). The number of

lices is 128 and there are seven slices between any two consecu-

ive slices. Note that, because our method can reconstruct the vol-

me with fewer slice data, we remove some similar slices (the empty

oxes in Fig. 15(a)) and use 63 slices. We perform the resolution on

he domain (0, 1) × (0, 1) × (0, 4.120) with a 216 × 216 × 890 mesh

rid. Fig. 15(b) and (c) show results of volume reconstruction with

ifferent angles after only 23 iterations. As can be seen, our al-

orithm represents the bone image well and produces good visual

uality.

. Conclusion

We presented a fast, robust, and accurate numerical method for

reating a mathematical model that produces 3D volume reconstruc-

ion using slice data. The governing equations are based on the Allen–

ahn and Cahn–Hilliard equations with a fidelity term. This term

eeps the solutions close to the given slice data. The proposed algo-

ithm has two steps: image segmentation for the raw given slice data

nd 3D volume reconstruction using the segmented images. We ap-

lied a hybrid method and an unconditionally stable nonlinear split-

ing scheme, and then we solved the resulting system of discrete

quations using a multigrid method. We demonstrated the accuracy,

fficiency, and robustness of the method on both synthetic and real

edical images, such as a spiral, two linked tori, three branching,

ead, brain, bunny, vertebra, tibia, and fibula. The reconstructed vol-

mes had smooth surfaces, fitting the given original slice data. As a

uture work, it would be of interest to investigate automatic criteri-

ns about how many interslices are needed and what is an optimal

olerance for the iterations.
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