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NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL
INCOMPRESSIBLE NAVIER–STOKES EQUATION
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DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-713, REPUBLIC OF KOREA

ABSTRACT. In this paper, we briefly review and describe a projection algorithm for numeri-
cally computing the two-dimensional time-dependent incompressible Navier–Stokes equation.
The projection method, which was originally introduced by Alexandre Chorin [A.J. Chorin,
Numerical solution of the Navier–Stokes equations, Math. Comput., 22 (1968), pp. 745–762],
is an effective numerical method for solving time-dependent incompressible fluid flow prob-
lems. The key advantage of the projection method is that we do not compute the momentum
and the continuity equations at the same time, which is computationally difficult and costly.
In the projection method, we compute an intermediate velocity vector field that is then pro-
jected onto divergence-free fields to recover the divergence-free velocity. Numerical solutions
for flows inside a driven cavity are presented. We also provide the source code for the programs
so that interested readers can modify the programs and adapt them for their own purposes.

1. INTRODUCTION

The time-dependent Navier–Stokes (NS) equations, which describe the motion of viscous
fluids, for the two-dimensional incompressible fluids are given as:

ρ (ut + uux + vuy) = −px + η∆u, (1.1)
ρ (vt + uvx + vvy) = −py + η∆v, (1.2)

ux + vy = 0, (1.3)

where ρ is the density, (u(x, y, t), v(x, y, t)) is the velocity field, p(x, y, t) is the hydrodynamic
pressure, and η is the dynamic viscosity. Equation (1.3) represents an incompressible fluid [19].
Equations (1.1) – (1.3) can be rewritten as Eqs. (1.4) and (1.5) after non-dimensionalization.

ut + u · ∇u = −∇p+
1

Re
∆u, (1.4)

∇ · u = 0, (1.5)
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where u = (u, v), Re is the Reynolds number which is defined as Re = ρUcLc/η and Uc is a
characteristic velocity, and Lc is a characteristic length.

The main purpose of the present paper is to review and describe a projection algorithm for
numerically computing the incompressible NS Eqs. (1.1)–(1.3). The projection method, which
was originally introduced by Alexandre Chorin [4], is a fast and efficient numerical method
for solving the unsteady NS equations. To solve the momentum Eq. (1.4) and the continuity
Eq. (1.5) as a system at the same time is computationally difficult and costly. However, in the
projection method, first, we compute an intermediate velocity vector field, which is generally
not divergence-free vector field. Second, we then project the intermediate velocity field onto
divergence-free field to recover the divergence-free velocity.

The projection method can be classified into two broad categories, namely the pressure-
correction method and the velocity-correction method. The pressure-correction method, some-
times called by fractional step method or Chorin’s method, is time-marching techniques com-
posed of two sub-steps for each time step: the pressure is first treated explicitly and then is
corrected by projecting the intermediate velocity onto the divergence-free vector field. See
[4, 18, 24, 25, 27] for more detail. The velocity-correction method is to change the role of the
velocity and the pressure in the pressure-correction schemes: the viscous term is first explicitly
and then the velocity is corrected. See [11, 12, 17, 21] for more detail.

After Chorin’s projection method, many variants of the projection method have been pro-
posed. Kim and Moin [18] addressed that the conventional use of velocity boundary conditions
for the intermediate velocity field can lead to inconsistent numerical solutions. They derived
appropriate boundary conditions for the intermediate velocity field. Instead of imposing a dis-
crete form of the divergence-free constraint, we only approximately impose the constraint; that
is, the velocity field is not exactly divergence-free vector field [1]. In [3], the authors de-
veloped a second-order projection method for the incompressible NS equations. In [29], the
author proposed a fourth-order approximate projection method for numerically solving the in-
compressible NS equations using structured adaptive mesh refinement. See [10] for more detail
review.

The contents of this paper are organized as follows. Section 2 describes the projection
solution algorithm for the NS equations. We also present Helmholtz–Hodge decomposition
and a linear multigrid algorithm. In Section 3, we perform numerical experiments for flows
inside a driven cavity. Conclusion is given in Section 4. Finally, we also provide the source
code for the programs so that interested readers can modify the programs and adapt them for
their own purposes in Appendix.

2. NUMERICAL SOLUTION

The fundamental idea of the projection method is based on the Helmholtz–Hodge decom-
position: A vector field can be uniquely decomposed into a divergence-free vector field and
a curl-free vector field. The projection algorithm consists of two steps. In the first step, an
intermediate velocity field that does not satisfy the divergence-free condition is solved. In the
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second step, the intermediate velocity is decomposed into the divergence-free next time veloc-
ity and the pressure field.

Let a computational domain be partitioned in Cartesian geometry into a uniform mesh with
mesh spacing h. The center of each cell, Ωij , is located at (xi, yj) = ((i− 0.5)h, (j − 0.5)h)
for i = 1, · · · , Nx and j = 1, · · · , Ny. Nx and Ny are the numbers of cells in the x and y
directions, respectively. The cell vertices are located at (xi+ 1

2
, yj+ 1

2
) = (ih, jh). A staggered

marker-and-cell (MAC) mesh of Harlow and Welch [16] is used in which pressure and phase
fields are stored at cell centers and velocities at cell interfaces. Figure 1 shows the staggered
grid.

vi,j−1/2

vi,j+1/2

vi+1,j−1/2

vi+1,j+1/2

ui−1/2,j ui+1/2,j

ui−1/2,j+1 ui+1/2,j+1

pij

FIGURE 1. Velocities are defined at cell boundaries while the pressure field is
defined at the cell centers.

At the beginning of each time step, given un, we want to find un+1 and pn+1 which solve the
following temporal discretization of the dimensionless form of Eqs. (1.4) and (1.5) of motion:

un+1 − un

∆t
= −(u · ∇du)

n −∇dp
n+1 +

1

Re
∆du

n,

∇d · un+1 = 0.

The outline of the main procedures in one time step follows:

Step 1. Initialize u0 to be the divergence-free velocity field.
Step 2. Solve an intermediate velocity field, ũ, which generally does not satisfy the incom-

pressible condition, without the pressure gradient term,
ũ− un

∆t
= −un · ∇du

n +
1

Re
∆du

n.

The resulting finite difference equations are written out explicitly. They take the form

ũi+ 1
2
,j = un

i+ 1
2
,j
−∆t(uux + vuy)

n
i+ 1

2
,j

+
∆t

h2Re

(
un
i+ 3

2
,j
+ un

i− 1
2
,j
− 4un

i+ 1
2
,j
+ un

i+ 1
2
,j+1

+ un
i+ 1

2
,j−1

)
, (2.1)
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ṽi,j+ 1
2
= vn

i,j+ 1
2

−∆t(uvx + vvy)
n
i,j+ 1

2

+
∆t

h2Re

(
vn
i+1,j+ 1

2
+ vn

i−1,j+ 1
2
− 4vn

i,j+ 1
2
+ vn

i,j+ 3
2
+ vn

i,j− 1
2

)
, (2.2)

where the advection terms, (uux + vuy)
n
i+ 1

2
,j

and (uvx + vvy)
n
i,j+ 1

2

, are defined by

(uux + vuy)
n
i+ 1

2
,j
= un

i+ 1
2
,j
ūnx

i+1
2 ,j

+
vn
i,j− 1

2

+ vn
i+1,j− 1

2

+ vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

4
ūny

i+1
2 ,j

,

(uvx + vvy)
n
i,j+ 1

2

=
un
i− 1

2
,j
+ un

i− 1
2
,j+1

+ un
i+ 1

2
,j
+ un

i+ 1
2
,j+1

4
v̄nx

i,j+1
2

+ vn
i,j+ 1

2

v̄ny
i,j+1

2

.

The values ūnx
i+1

2 ,j
and ūny

i+1
2 ,j

are computed using the upwind procedure. The procedure is

ūnx
i+1

2 ,j
=


un

i+1
2 ,j

−un

i− 1
2 ,j

h if un
i+ 1

2
,j
> 0

un

i+3
2 ,j

−un

i+1
2 ,j

h otherwise

and

ūny
i+1

2 ,j
=


un

i+1
2 ,j

−un

i+1
2 ,j−1

h if vn
i,j− 1

2

+ vn
i+1,j− 1

2

+ vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

> 0
un

i+1
2 ,j+1

−un

i+1
2 ,j

h otherwise.

The quantities v̄nx
i,j+1

2

and v̄ny
i,j+1

2

are computed in a similar manner.

In the projection method, we use the Helmholtz–Hodge decomposition: A vector field w on
Ω can be uniquely decomposed in the form

w = u +∇p, (2.3)

where u has zero divergence and u ·n = 0 on ∂Ω. The proof of this theorem will be provided in
the next section. In our context, we apply the theorem to the intermediate velocity field w = ũ,
i.e.,

ũ = un+1 +∇d(∆tpn+1). (2.4)

Then, we solve the following equations for the advanced pressure field at the (n + 1) time
step.

un+1 − ũ

∆t
= −∇dp

n+1, (2.5)

∇d · un+1 = 0. (2.6)

With application of the divergence operator to Eq. (2.5), we find that the Poisson equation
for the pressure at the advanced time (n+ 1) is

∆dp
n+1 =

1

∆t
∇d · ũ, (2.7)
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where we have made use of Eq. (2.6) and the terms are defined as follows:

∆dp
n+1 =

pn+1
i+1,j + pn+1

i−1,j − 4pn+1
ij + pn+1

i,j+1 + pn+1
i,j−1

h2

∇d · ũij =
ũi+ 1

2
,j − ũi− 1

2
,j

h
+

ṽi,j+ 1
2
− ṽi,j− 1

2

h
.

The boundary condition for the pressure is

n · ∇dp
n+1 = n ·

(
−un+1 − un

∆t
− (u · ∇du)

n +
1

Re
∆du

n

)
,

where n is the unit normal vector to the domain boundary. We use no-slip and linearity bound-
ary conditions, (n ·∆du

n = 0), to the domain boundaries. Therefore,

n · ∇dp
n+1 = 0. (2.8)

The Poisson equation (2.7) with the homogeneous Neumann boundary condition in Eq. (2.8)
dose not have a unique solution. Instead, its solution is unique up to a constant. There are two
approaches [6, 7] to make the solution unique as follows: (i) imposing the Dirichlet condition
at a single point and (ii) forcing its summation to be zero. Here, we use the following correction

pn+1
ij = pn+1

ij − 1

NxNy

Nx∑
i=1

Ny∑
j=1

pn+1
ij . (2.9)

The resulting linear system of Eq. (2.7) with the boundary condition in Eq. (2.8) is solved
using a multigrid method [26]. It is well known that classical iterative methods, such as Gauss–
Seidel, Jacobi, SOR, or CG, converge very slowly for solving large linear systems [14]. On the
other hand, the multigrid method is to damp strongly the oscillatory error components [13] and
its solution is obtained in O(N) time, where N is the total number of grid points [8].

Then the divergence-free normal velocities un+1 and vn+1 are defined by

un+1 = ũ−∆t∇dp
n+1, i.e.,

un+1
i+ 1

2
,j
= ũi+ 1

2
,j −

∆t

h
(pn+1

i+1,j − pn+1
ij ), vn+1

i,j+ 1
2

= ṽi,j+ 1
2
− ∆t

h
(pn+1

i,j+1 − pn+1
ij ).

These complete the one time step of the NS projection scheme.

2.1. Helmholtz–Hodge decomposition. A vector field w on Ω can be uniquely decomposed
in the form

w = u +∇p, (2.10)

where u has zero divergence and u · n = 0 on ∂Ω. The proof of Eq. (2.10) is as follows [5]:
Let p be defined by a solution to the Neumann problem

∆p = ∇ · w in Ω, with ∇p · n = w · n on ∂Ω, (2.11)
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where n is normal vector (see [2] for the existence and uniqueness up to an additive constant
of the solution). Then

u = w −∇p, ∇ · u = ∇ · w −∆p = 0, and u · n = w · n −∇p · n = 0. (2.12)

These imply the existence. Next, we need to show the uniqueness. To show the uniqueness of
the decomposition, suppose w = u1 +∇p1 = u2 +∇p2. Then, we have

u1 − u2 +∇p1 −∇p2 = 0. (2.13)

Next, taking the inner product with u1 − u2 to Eq. (2.13) and integrating, we have∫
Ω
|u1 − u2|2 dV +

∫
Ω
(u1 − u2) · (∇p1 −∇p2) dV = 0. (2.14)

∫
Ω

u · ∇p dV =

∫
Ω
[∇ · (pu)− p∇ · u] dV =

∫
∂Ω

pu · ndS = 0, (2.15)

where have used ∇ · u = 0, the divergence theorem, and the boundary condition for u. There-
fore, Eq. (2.14) becomes ∫

Ω
|u1 − u2|2 dV = 0. (2.16)

Consequently we obtain u1 = u2 and ∇p1 = ∇p2.

2.2. Linear multigrid V-cycle algorithm. In this section we describe the algorithm of the
linear multigrid method for solving the discrete system in Eq. (2.7). In order to explain clearly
the steps taken during a single V-cycle, we focus on a numerical solution on a 8× 8 mesh. We
define discrete domains, Ω3, Ω2, Ω1, and Ω0, where

Ωk = {(xk,i = (i− 0.5)hk, yk,j = (j − 0.5)hk)|1 ≤ i, j ≤ 2k+1 and hk = 23−kh}.
Ωk−1 is coarser than Ωk by a factor of 2. The multigrid solution of the discrete Eq. (2.7) makes
use of a hierarchy of meshes (Ω3, Ω2, Ω1, and Ω0) created by successively coarsening the
original mesh, Ω3 as shown in Fig. 2. A pointwise Gauss–Seidel relaxation scheme is used as
the smoother in the multigrid method. The algorithm of the multigrid method for solving Eq.
(2.7) is as follows. We rewrite the Eq. (2.7) by

L3(p
n+1
3,ij ) = f3,ij on Ω3, (2.17)

where

L3(p
n+1
3,ij ) = ∆dp

n+1
3,ij and f3,ij =

1

∆t
∇d · ũn

3,ij .

Given the numbers, ν1 and ν2, of pre- and post- smoothing relaxation sweeps, an iteration
step for the multigrid method using the V-cycle is formally written as follows [26]. That is,
starting an initial condition p03, we want to find pn3 for n = 1, 2, · · · . Given pn3 , we want to
find the pn+1

3 solution that satisfies Eq. (2.7). At the very beginning of the multigrid cycle
the solution from the previous time step is used to provide an initial guess for the multigrid
procedure. First, let pn+1,0

3 = pn3 .
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(a) Ω2 (8× 8) h (b) Ω1 (4× 4) 2h (c) Ω0 (2× 2) 4h

(d)

FIGURE 2. (a), (b), and (c) are a sequence of coarse grids starting with h =
L/Nx. (d) is a composition of grids, Ω2, Ω1, and Ω0.

Multigrid cycle

pn+1,m+1
k = MGcycle(k, pn+1,m

k , Lk, fk, ν1, ν2).

That is, pn+1,m
k and pn+1,m+1

k are the approximations of pn+1
k before and after an MGcycle.

Now, define the MGcycle.
Step 1) Presmoothing

p̄n+1,m
k = SMOOTHν1(pn+1,m

k , Lk, fk),

means performing ν1 smoothing steps with the initial approximation pn+1,m
k , source terms fk,

and a SMOOTH relaxation operator to get the approximation p̄n+1,m
k . Here, we derive the

smoothing operator in two dimensions.
Now we derive a Gauss–Seidel relaxation operator. First, we rewrite Eq. (2.17) as

pn+1
k,ij =

[
−fk,ij +

pn+1
i+1,j + pn+1

i−1,j + pn+1
i,j−1 + pn+1

i,j−1

h2

]/(
4

h2

)
. (2.18)

Next, we replace pn+1
k,αβ in Eq. (2.18) with p̄n+1,m

k,αβ if (α < i) or (α = i and β ≤ j), otherwise

with pn+1,m
k,αβ , i.e.,
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p̄n+1,m
k,ij =

[
−fk,ij +

pn+1,m
i+1,j + p̄n+1,m

i−1,j + pn+1,m
i,j+1 + p̄n+1,m

i,j−1

h2

]/(
4

h2

)
. (2.19)

Therefore, in a multigrid cycle, one smooth relaxation operator step consists of solving Eq.
(2.19) given above for 1 ≤ i ≤ 2k−3Nx and 1 ≤ j ≤ 2k−3Ny.

Step 2) Coarse grid correction
• Compute the defect: d̄mk = fk − Lk(p̄

n+1,m
k ).

• Restrict the defect and p̄mk : d̄mk−1 = Ik−1
k d̄mk

The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions.

dk−1(xi, yj) = Ik−1
k dk(xi, yj) =

1

4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
)

+dk(xi+ 1
2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

• Compute an approximate solution p̂n+1,m
k−1 of the coarse grid equation on Ωk−1, i.e.,

Lk−1(p
n+1,m
k−1 ) = d̄mk−1. (2.20)

If k = 1, we use a direct or fast iteration solver for Eq. (2.20). If k > 1, we solve Eq.
(2.20) approximately by performing k-grid cycles using the zero grid function as an initial
approximation:

v̂n+1,m
k−1 = MGcycle(k − 1, 0, Lk−1, d̄

m
k−1, ν1, ν2).

• Interpolate the correction: q̂n+1,m
k = Ikk−1q̂

n+1,m
k−1 . Here, the coarse values are simply

transferred to the four nearby fine grid points, i.e., qk(xi, yj) = Ikk−1qk−1(xi, yj) = qk−1(xi+ 1
2
,

yj+ 1
2
) for the i and j odd-numbered integers.

• Compute the corrected approximation on Ωk

pm, after CGC
k = p̄n+1,m

k + q̂n+1,m
k .

Step 3) Postsmoothing: pn+1,m+1
k = SMOOTHν2(pm, after CGC

k , Lk, fk).
This completes the description of a MGcycle. Then, for unique solution, we redefine the

pressure using Eq. (2.9) as follows:

pn+1,m+1
ij = pn+1,m+1

ij − 1

NxNy

Nx∑
i=1

Ny∑
j=1

pn+1,m+1
ij . (2.21)

One MGcycle step stops if the consequence error ∥pn+1,m+1 − pn+1,m∥∞ is smaller than a
given tolerance, where

∥p∥∞ = max
1≤i≤Nx,1≤j≤Ny

|pij |.
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2.3. Stability condition. For the stability and accuracy of the numerical solution, Welch et al.
[28] suggested three stability condition. The first one is

∆t <
h2

4
Re. (2.22)

The two conditions are the famous Courant–Friedrichs–Lewy (CFL) conditions as

∆t <
h

|u|max
, ∆t <

h

|v|max
. (2.23)

Here, |u|max and |v|max are the maximum absolute values of u and v velocities. These condi-
tions mean that no fluid particle may cross more than mesh spacing h in a given time interval
∆t [20, 22, 23]. By three conditions Eqs. (2.22) and (2.23), we can choose the time step size
∆t as follows.

∆t = Cmin

(
h2

4
Re,

h

|u|max
,

h

|v|max

)
, (2.24)

where C is constant value in (0, 1) as a safety factor.

3. NUMERICAL EXPERIMENTS

In this section, we consider a lid-driven cavity flow in a two-dimensional domain. Figure 3
shows the computational domain and the boundary conditions for the flow in a driven cavity.
The initial velocity is zero inside the domain. Boundary conditions are zero at three walls
except the top lid, where (u, v) = (1, 0). Therefore, flow is driven by the upper wall [9].

u = v = 0

u = 1, v = 0

u = 0
v = 0

u = 0
v = 0

x

y

FIGURE 3. Schematic illustration of the lid-driven cavity flow

3.1. Convergence test. We demonstrate the convergence of the velocities u and v on Ω =
(0, 1)×(0, 1). To calculate the convergence rate of the numerical scheme, we perform a number
of simulations on a set of increasingly finer grids. The numerical velocities are computed on
the grid sizes, h = 1/2n+1 for n = 5, 6, 7, 8, and 9. For each case, the calculation is run up to
time T = 0.2 with the time step size ∆t = 0.032h and Re = 100. We define the error of a grid
solution as the discrete l2-norm of the difference between that grid and the average of the next
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finer grid cells covering it, for example, eh/h
2 ij

:= uhij − (uh
2 2i,2j

+ uh
2 2i,2j−1

)/2. The rate

of convergence is defined as the ratio of successive errors as log2(∥eh/h
2
∥2/∥eh

2
/h
4
∥2). Table

1 shows the errors and rates of convergence. The numerical results show that the convergence
rates of u and v are first-order in space and time as we expect from the first-order upwind
scheme.

TABLE 1. Errors and rates of convergence for velocities u and v.

Case 32-64 Rate 64-128 Rate 128-256 Rate 256-512
u 5.81490E-3 1.3264 2.31871E-3 1.1460 1.04779E-3 1.0976 4.89617E-4
v 3.77710E-3 1.1070 1.75359E-3 1.1034 8.16143E-4 1.1006 3.80588E-4

3.2. Effect of domain size. We first consider a lid-driven cavity flow in Ω = (0, 1) × (0, 1)
[9]. The result is shown in Fig. 4 with Nx = Ny = 64, i.e., h = 1/64, Re = 10000, and
∆t = 0.01h2Re. We can observe that the eye of principal vortex moves into the core of the
cavity and the lower left/right corner-eddies as time evolves.

t = 200∆t t = 2000∆t t = 100000∆t

FIGURE 4. The evolution of cavity flow on the square domain Ω = (0, 1) ×
(0, 1). The dimensionless times are shown below each figure.

To see the effect of domain size, we perform a numerical simulation on a non-square domain,
i.e., Ω = (0, 1) × (0, 2) with mesh size (64 × 128) [15]. We use h = 1/64, Re = 10000,
and ∆t = 0.01h2Re. Figure 5 shows the numerical results of the lid-driven cavity flow at
each time on the rectangle domain. Unlike the results in Fig. 4, we observe that two principal
vortices with an opposite directional rotation at the lower corner.

3.3. Effect of Re number. Finally, we investigate the effect of Re number. On the computa-
tional domain Ω = (0, 1) × (0, 1), we use the parameters Nx = 64, Ny = 64, i.e., h = 1/64,
∆t = 0.01h2Re, and total simulation time T = 100000∆t. Figure 6 shows velocity fields of
lid-driven cavity flows with different Re numbers at the final time. Here, (a) and (b) are the
results with Re = 10 and 10000, respectively. The center of vortex moves downward when the
Reynolds number is getting larger.
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t = 2000∆t t = 5000∆t t = 100000∆t

FIGURE 5. The evolution of cavity flow on the rectangle domain Ω = (0, 1)×
(0, 2). Each simulation time shows on the bottom of figures. Moving the
flows is represented by arrow and the overall flow of the fluid are displayed by
streamline.

(a) Re = 10 (b) Re = 10000

FIGURE 6. Velocity field of a lid-driven cavity flow at steady state with dif-
ferent Re numbers. Here, (a) and (b) are the results with Re = 10 and 10000,
respectively.
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4. CONCLUSION

In this article, we briefly reviewed and described the projection algorithm for numerically
computing the two-dimensional time-dependent incompressible NS equation. The projection
method, which was originally introduced by Alexandre Chorin [4], is an efficient numerical
method for solving the unsteady incompressible fluid flow problems and has been widely used
by many researchers. Solving the momentum and the continuity equations at the same time is
computationally difficult and costly. In the original projection method, we compute an interme-
diate velocity vector field without pressure gradient, and then we project the temporary velocity
onto divergence-free fields to recover the divergence-free velocity. As a standard test problem,
we considered a driven cavity flow. We also provided the source code for the programs so that
interested readers can modify the programs and adapt them for their own purposes. As a future
work, three-dimensional extension would be useful because most of real world problems are
three-dimensional space.
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APPENDIX

Following code1 is for the two-dimensional cavity flow of Fig. 4 and parameters are enu-
merated in the Table 2.
/* Two-dimensional Navier-Stokes equation */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#define gnx 32
#define gny 32
#define iloop for(i=1;i<=gnx;i++)
#define i0loop for(i=0;i<=gnx;i++)
#define jloop for(j=1;j<=gny;j++)
#define j0loop for(j=0;j<=gny;j++)

1http://www.ksiam.org/archive/supplement/jksiam-2015v19p103.zip contains the
codes and related files in this section.
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Parameters Description
nx, ny maximum number of grid points in the x-, y-direction
n level number of multigrid level
p relax number of times being relax
dt ∆t
xleft, yleft minimum value on the x-, y-axis
xright, yright maximum value on the x-, y-axis
ns number of print out data
max it maximum number of iteration
max it mg maximum number of multigrid iteration
tol mg tolerance for multigrid
h space step size
h2 h2

Re Reynolds number
TABLE 2. Parameters used for the 2D NS equation.

#define ijloop iloop jloop
#define i0jloop i0loop jloop
#define ij0loop iloop j0loop
#define iloopt for(i=1;i<=nxt;i++)
#define i0loopt for(i=0;i<=nxt;i++)
#define jloopt for(j=1;j<=nyt;j++)
#define j0loopt for(j=0;j<=nyt;j++)
#define ijloopt iloopt jloopt
#define i0jloopt i0loopt jloopt
#define ij0loopt iloopt j0loopt
int nx,ny,n_level,p_relax,nt;
double **sor,h,h2,**tu,**tv,**workp,**worku,**workv,**adv_u,

**adv_v,dt,xleft,xright,yleft,yright,Re;
char bufferu[20],bufferv[20],bufferp[20];
void initialization(double **p,double **u,double **v){

int i,j;
ijloop p[i][j] = 0.0; ij0loop v[i][j] = 0.0;
i0jloop u[i][j] = 0.0;

}
void augmenuv(double **u,double **v,int nx,int ny){

int i,j;
double bdvel=1.0;
iloop {u[i][0] = -u[i][1]; u[i][ny+1] = 2.0*bdvel-u[i][ny];}
jloop {v[0][j] = -v[1][j]; v[nx+1][j] = -v[nx][j];}

}
void advection_uv(double **u,double **v,double **adv_u,double **adv_v){

int i,j;
augmenuv(u,v,nx,ny);
for (i=1; i<nx; i++) { jloop {
if (u[i][j]>0.0) {adv_u[i][j] = u[i][j]*(u[i][j]-u[i-1][j])/h;}
else {adv_u[i][j] = u[i][j]*(u[i+1][j]-u[i][j])/h;}



NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL NAVIER–STOKES EQUATION 117

if (v[i][j-1]+v[i+1][j-1]+v[i][j]+v[i+1][j]>0.0)
adv_u[i][j] += 0.25*(v[i][j-1]+v[i+1][j-1]+v[i][j]+v[i+1][j])

*(u[i][j]-u[i][j-1])/h;
else adv_u[i][j] += 0.25*(v[i][j-1]+v[i+1][j-1]+v[i][j]+v[i+1][j])

*(u[i][j+1]-u[i][j])/h;}}
iloop { for (j=1; j<ny; j++) {
if (u[i-1][j]+u[i][j]+u[i-1][j+1]+u[i][j+1]>0.0)
adv_v[i][j] = 0.25*(u[i-1][j]+u[i][j]+u[i-1][j+1]+u[i][j+1])

*(v[i][j]-v[i-1][j])/h;
else adv_v[i][j] = 0.25*(u[i-1][j]+u[i][j]+u[i-1][j+1]+u[i][j+1])

*(v[i+1][j]-v[i][j])/h;
if (v[i][j]>0.0) {adv_v[i][j] += v[i][j]*(v[i][j]-v[i][j-1])/h;}
else {adv_v[i][j] += v[i][j]*(v[i][j+1] - v[i][j])/h;}}}

}
void temp_uv(double **tu,double **tv,double **u,double **v,

double **adv_u,double **adv_v){
int i,j;

for (i=1; i<nx; i++) {jloop {tu[i][j] = u[i][j]+dt*( (u[i+1][j]
+u[i-1][j]-4.0*u[i][j]+u[i][j+1]+u[i][j-1])/(Re*h2)-adv_u[i][j]);}}
iloop {for (j=1; j<ny; j++) {tv[i][j] = v[i][j]+dt*( (v[i+1][j]
+v[i-1][j]-4.0*v[i][j]+v[i][j+1]+v[i][j-1])/(Re*h2)-adv_v[i][j]);}}

}
void mat_copy(double **a,double **b,int xl,int xr,int yl,int yr){

int i,j;
for (i=xl;i<=xr;i++) {for (j=yl;j<=yr;j++) {a[i][j]=b[i][j];}}

}
void relax_p(double **p,double **f,int nxt,int nyt){

int i,j,iter;
double ht,ht2,coef,src;
ht2 = pow((xright-xleft) / (double) nxt,2);
for (iter=1; iter<=p_relax; iter++) {ijloopt {src = f[i][j];

if (i==1) {src -= p[2][j]/ht2; coef = -1.0/ht2;}
else if (i==nxt) {src -= p[nxt-1][j]/ht2; coef = -1.0/ht2;}
else {src -= (p[i+1][j] + p[i-1][j])/ht2; coef = -2.0/ht2;}
if (j==1) {src -= p[i][2]/ht2; coef += -1.0/ht2;}
else if (j==nyt) {src -= p[i][nyt-1]/ht2; coef += -1.0/ht2;}
else {src -= (p[i][j+1] + p[i][j-1])/ht2; coef += -2.0/ht2;}
p[i][j] = src / coef;}}

}
double **dmatrix(long nrl,long nrh,long ncl,long nch){

double **m;
long i,nrow=nrh-nrl+1+1,ncol=nch-ncl+1+1;
m=(double **) malloc((nrow)*sizeof(double*));
m+=1; m-=nrl;
m[nrl]=(double *) malloc((nrow*ncol)*sizeof(double));
m[nrl]+=1; m[nrl]-=ncl;
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
return m;

}
void free_dmatrix(double **m,long nrl,long nrh,long ncl,long nch){

free(m[nrl]+ncl-1); free(m+nrl-1);
}
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void grad_p(double **p,double **dpdx,double **dpdy,int nxt,int nyt){
int i,j;
double ht;
ht = xright / (double) nxt;
i0jloopt {if (i==0) {dpdx[0][j] = 0.0;}

else if (i==nxt) {dpdx[nxt][j] = 0.0;}
else {dpdx[i][j] = (p[i+1][j] - p[i][j])/ht;}}

ij0loopt {if (j==0) {dpdy[i][0] = 0.0;}
else if (j==nyt) {dpdy[i][nyt] = 0.0;}
else {dpdy[i][j] = (p[i][j+1] - p[i][j])/ht;}}

}
void div_uv(double **tu,double **tv,double **divuv,int nxt,int nyt){

int i,j;
double ht;
ht = xright / (double) nxt;

ijloopt {divuv[i][j]=(tu[i][j]-tu[i-1][j]+tv[i][j]-tv[i][j-1])/ht;}
}
void laplace_p(double **p,double **lap_p,int nxt,int nyt){

double **dpdx,**dpdy;
dpdx = dmatrix(0,nxt,1,nyt);dpdy = dmatrix(1,nxt,0,nyt);
grad_p(p,dpdx,dpdy,nxt,nyt);div_uv(dpdx,dpdy,lap_p,nxt,nyt);
free_dmatrix(dpdx,0,nxt,1,nyt);free_dmatrix(dpdy,1,nxt,0,nyt);

}
void mat_sub(double **a,double **b,double **c,int xl,int xr,int yl,int yr){

int i,j;
for (i=xl;i<=xr;i++) {for (j=yl;j<=yr;j++) {a[i][j]=b[i][j]-c[i][j];}}

}
void residual_p(double **r,double **u,double **f,int nxt,int nyt){

laplace_p(u,r,nxt,nyt); mat_sub(r,f,r,1,nxt,1,nyt);
}
void restrict(double **u_fine,double **u_coarse,int nxt,int nyt){

int i,j;
ijloopt {u_coarse[i][j]=0.25*(u_fine[2*i-1][2*j-1]
+u_fine[2*i-1][2*j]+u_fine[2*i][2*j-1]+u_fine[2*i][2*j]);}

}
void zero_matrix(double **a,int xl,int xr,int yl,int yr){

int i,j;
for (i=xl;i<=xr;i++) {for (j=yl;j<=yr;j++) {a[i][j]=0.0;}}

}
void prolong(double **u_coarse,double **u_fine,int nxt,int nyt){

int i,j;
ijloopt {u_fine[2*i-1][2*j-1]=u_fine[2*i-1][2*j]=
u_fine[2*i][2*j-1]=u_fine[2*i][2*j]=u_coarse[i][j];}

}
void mat_add(double **a,double **b,double **c,int xl,int xr,int yl,int yr){

int i,j;
for (i=xl;i<=xr;i++) {for (j=yl;j<=yr;j++) {a[i][j]=b[i][j]+c[i][j];}}

}
void vcycle_uv(double **uf,double **ff,int nxf,int nyf,int ilevel){

relax_p(uf,ff,nxf,nyf);
if (ilevel < n_level) {

int nxc,nyc;
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double **rf,**uc,**fc;
nxc=nxf / 2; nyc=nyf / 2; rf=dmatrix(1,nxf,1,nyf);
uc=dmatrix(1,nxc,1,nyc); fc=dmatrix(1,nxc,1,nyc);
residual_p(rf,uf,ff,nxf,nyf); restrict(rf,fc,nxc,nyc);
zero_matrix(uc,1,nxc,1,nyc);
vcycle_uv(uc,fc,nxc,nyc,ilevel + 1);
prolong(uc,rf,nxc,nyc); mat_add(uf,uf,rf,1,nxf,1,nyf);
relax_p(uf,ff,nxf,nyf); free_dmatrix(rf,1,nxf,1,nyf);
free_dmatrix(uc,1,nxc,1,nyc); free_dmatrix(fc,1,nxc,1,nyc);}

}
void pressure_update(double **a){

int i,j;
double ave = 0.0;
ijloop {ave = ave + a[i][j];} ave /= (nx+0.0)*(ny+0.0);
ijloop {a[i][j] -= ave;}

}
double mat_max(double **a,int nrl,int nrh,int ncl,int nch){

int i,j;
double x = 0.0;
for (i=nrl;i<=nrh;i++) {for (j=ncl;j<=nch;j++)
{if (fabs(a[i][j]) > x) {x = fabs(a[i][j]);}}}
return x;

}
void MG_Poisson(double **p,double **f){

int i,j,max_it = 2000,it_mg = 1;
double tol = 1.0e-5,resid = 1.0;
mat_copy(workv,p,1,nx,1,ny);
while (it_mg <= max_it && resid >= tol) {it_mg++;

vcycle_uv(p,f,nx,ny,1); pressure_update(p);
ijloop {sor[i][j] = workv[i][j] - p[i][j];}

resid=mat_max(sor,1,nx,1,ny);mat_copy(workv,p,1,nx,1,ny);}
printf("Mac iteration = %d residual = %16.15f \n",it_mg,resid);

}
void source_uv(double **tu,double **tv,double **divuv,int nxt,int nyt){

int i,j;
div_uv(tu,tv,divuv,nxt,nyt); ijloopt {divuv[i][j] /= dt;}

}
void Poisson(double **tu,double **tv,double **p){

source_uv(tu,tv,workp,nx,ny); MG_Poisson(p,workp);
}
void full_step(double **u,double **v,double **nu,double **nv,double **p){

int i,j;
advection_uv(u,v,adv_u,adv_v);temp_uv(tu,tv,u,v,adv_u,adv_v);
Poisson(tu,tv,p); grad_p(p,worku,workv,nx,ny);
for (i=1;i<nx;i++){jloop {nu[i][j]=tu[i][j]-dt*worku[i][j];}}
iloop {for (j=1;j<ny;j++){nv[i][j]=tv[i][j]-dt*workv[i][j];}}

}
void print_data1(double **u,double **v,double **p){

int i,j;
FILE *fu,*fv,*fp;

fu=fopen(bufferu,"a");fv=fopen(bufferv,"a");fp=fopen(bufferp,"a");
iloop {jloop {fprintf(fu," %16.14f",0.5*(u[i][j]+u[i-1][j]));
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fprintf(fv," %16.14f",0.5*(v[i][j]+v[i][j-1]));
fprintf(fp," %16.14f",p[i][j]);} fprintf(fu,"\n");fprintf(fv,"\n");
fprintf(fp,"\n");}fclose(fu); fclose(fv); fclose(fp);
}
int main(){

int it,max_it,ns,count = 1;
double **u,**v,**nu,**nv,**p;
FILE *fu,*fv,*fp;
p_relax=5;nx=gnx;ny=gny;n_level=(int)(log(ny)/log(2)-0.9);
xleft=0.0;xright=1.0;yleft=0.0;yright=1.0*gny/gnx*xright;
h = (xright-xleft)/ (double)nx; h2 = pow(h,2);
max_it=1000;ns=(int)(max_it/10+0.001);Re=100.0;dt=0.1*h*h*Re;
p = dmatrix(1,nx,1,ny); sor = dmatrix(1,nx,1,ny);
workp=dmatrix(0,nx+1,0,ny+1);worku=dmatrix(0,nx+1,0,ny+1);
workv=dmatrix(0,nx+1,0,ny+1);u=dmatrix(-1,nx+1,0,ny+1);
v = dmatrix(0,nx+1,-1,ny+1);nu = dmatrix(-1,nx+1,0,ny+1);
nv = dmatrix(0,nx+1,-1,ny+1);tu = dmatrix(0,nx,1,ny);
tv = dmatrix(1,nx,0,ny);adv_u = dmatrix(0,nx,1,ny);
adv_v = dmatrix(1,nx,0,ny);zero_matrix(tu,0,nx,1,ny);
zero_matrix(tv,1,nx,0,ny);sprintf(bufferu,"u.m");
sprintf(bufferv,"v.m"); sprintf(bufferp,"p.m");
fu = fopen(bufferu,"w"); fv = fopen(bufferv,"w");
fp = fopen(bufferp,"w");fclose(fu);fclose(fv);fclose(fp);
initialization(p,u,v); print_data1(u,v,p);
mat_copy(nu,u,0,nx,1,ny); mat_copy(nv,v,1,nx,0,ny);
for (it=1; it<=max_it; it++) {printf("iteration = %d\n",it);

full_step(u,v,nu,nv,p); mat_copy(u,nu,0,nx,1,ny);
mat_copy(v,nv,1,nx,0,ny);
if (it % ns==0) {print_data1(nu,nv,p);

printf("print out counts %d \n",count);count++;}}
return 0;

}
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The velocity field in Fig. 4 is obtained by running following MATLAB code:
clear; clc; clf; close all;
ss=sprintf(’u.m’); uu=load(ss); ss=sprintf(’v.m’); vv=load(ss);
nx=32; ny=nx; yright=1; xright=1; h=xright/nx;
x=linspace(0.5*h,xright-0.5*h,nx); y=linspace(0.5*h,yright-0.5*h,ny);
[xx,yy]=meshgrid(x,y); N=size(uu,1)/nx; s=0.1;
for kk=1:11

figure;
u=uu(1+(kk-1)*nx:kk*nx,:); v=vv(1+(kk-1)*nx:kk*nx,:);
us=u’; vs=v’;
for i=1:nx

for j=1:ny
if rand() < 0.2

us(i,j)=0;
vs(i,j)=0;

end
end

end
quiver(xx(1:2:end,:),yy(1:2:end,:),s*us(1:2:end,:),s*vs(1:2:end,:),0,’k’)
axis image
set(gca,’xtick’,[]); set(gca,’ytick’,[]);

end


