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a b s t r a c t

In this paper we develop a fast and accurate numerical method for motion by mean curva-

ture of curves on a surface in three-dimensional space using the Allen–Cahn equation. We

use a narrow band domain. We adopt a hybrid explicit numerical method which is based on

an operator splitting method. First, we solve the heat equation by using an explicit standard

Cartesian finite difference scheme. For the domain boundary cells, we use an interpolation

using the closest point method. Then, we update the solution by using a closed-form solution.

The proposing numerical algorithm is computationally efficient since we use a hybrid explicit

numerical scheme and solve the governing equation only on the narrow domain. We perform

a series of numerical experiments. The computational results are consistent with known ana-

lytic solutions.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications in the natural and applied sciences require the solutions of partial differential equations on surfaces. For ex-

ample, there are texture synthesis in computer graphics (Turk, 1991), flow and solidification of a thin fluid film (Myers, Charpin,

& Chapman, 2002), brain imaging (Memoli, Sapiro, & Thompson, 2004), phase separation patterns for diblock copolymers on

spherical surfaces (Tang, Qiu, Zhang, & Yang, 2005), and surfactant distribution on a moving interface (Xu & Zhao, 2003). Ana-

lytic solutions to the problems on general surfaces are not always feasible, therefore it is important to be able to numerically

approximate them accurately and efficiently.

In Ruuth and Merriman (2008), the authors presented the closest point method, which is an embedding method for solving

partial differential equations on surfaces. In Merriman and Ruuth (2007), the diffusion generated motion algorithm has been

extended to the moving curves on surfaces. Key aspects to their approach are the use of standard diffusion in one dimension

higher than the underlying surface and the use of the closest point representation of the surface. The authors of Bertalmio,

Cheng, Osher, and Sapiro (2001) introduced a framework for solving variational problems and partial differential equations on

surfaces. The main idea is to represent the surface as the level set of a higher dimensional function and to solve the surface

equations in a fixed Cartesian coordinate system.

In this article, we propose a fast and accurate numerical method on a narrow band domain for motion by mean curvature on

a surface in three-dimensional space using the Allen–Cahn equation. The proposed hybrid explicit numerical method is based
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Fig. 1. (a) Schematic illustration of surface S, the narrow band domain �δ with thickness 2δ, and its boundary ∂�δ . (b) Closest points cp(x1) and cp(x2) for points

x1 and x2.
on an operator splitting method. First, we solve the heat equation by using an explicit finite difference scheme. For the domain

boundary cells, we use an interpolation using the closest point method. Then, we update the solution by using a closed-form

solution. The proposing numerical algorithm is simple and computationally efficient since we use a hybrid explicit numerical

scheme and solve the governing equation only on the narrow domain. The implementation of the algorithm is straightforward.

We perform a series of numerical experiments. The computational results are consistent with known analytic solutions.

This paper is organized as follows. In Section 2, we describe the governing equation. In Section 3, we provide the numerical

solution algorithm. We present the numerical results in Section 4. In Section 5, we give the paper’s conclusions and list future

work.

2. The Allen–Cahn equation on a narrow band domain

In this section, we consider motion by mean curvature of curves on a surface in three-dimensional space. Let S be a smooth

surface in R
3 and then we define a δ-neighborhood band of S as �δ = {y|x ∈ S, y = x + θn(x) for |θ | < δ}, where n(x) is a unit

normal vector at x ∈ S. We use the following Allen–Cahn (AC) equation:

∂φ(x, t)

∂t
= −F ′(φ(x, t))

ε2
+ �φ(x, t), x ∈ �δ, 0 < t ≤ T, (1)

where φ(x, t) is the difference between the concentrations of the two mixtures’ components and F(φ) = 0.25(φ2 − 1)2. The

parameter ε is the gradient energy coefficient related to the interfacial energy. The AC Eq. (1) was originally introduced as a

mathematical model for antiphase domain coarsening in a binary alloy (Allen & Cahn, 1979). For simplicity of exposition, we

shall illustrate schematics in two-dimensional space even though the actual algorithm is defined in three-dimensional space.

Fig. 1(a) shows the schematic illustration of surface S, the narrow band domain �δ with thickness 2δ, and its boundary ∂�δ .

Given a surface S, let cp(x) be a (possibly non-unique) point belonging to S which is closest to x (Macdonald, Brandman, & Ruuth,

2011). Fig. 1(b) shows the closest points cp(x1) and cp(x2) for points x1 and x2. The boundary condition is

φ(x, t) = φ(cp(x), t) on ∂�δ. (2)

If δ is small enough, then this boundary condition allows us to use the standard Laplacian operator in the narrow band domain

because the condition results in φ which is constant in the normal direction to the surface.

3. Numerical solution algorithm

We present a numerical scheme for the AC equation on the narrow band domain, �δ . We discretize the AC equation in a three-

dimensional domain � = (a, b) × (c, d) × (e, f ) which includes �δ . Let Nx, Ny, and Nz be positive integers, h = (b − a)/Nx = (d −
c)/Ny = ( f − e)/Nz be the uniform mesh size, and �h = {(xi = a + hi, y j = c + h j, zk = e + hk)|0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz}
be the discrete domain. Let φn

i jk
be approximations of φ(xi, yj, zk, n�t), where �t = T/Nt is the time step, T is the final time, and

Nt is the total number of time steps. We use the standard seven point discrete Laplacian:

�hφi jk = φi+1, jk + φi−1, jk + φi, j+1,k + φi, j−1,k + φi j,k+1 + φi j,k−1 − 6φi jk

h2
(3)

Let ψ : R
3 → R be the signed distance function to S. Its zero level set is given by S = {x ∈ R

3|ψ(x) = 0} with ψ < 0 inside S and

ψ > 0 outside S. Let us define the discrete narrow band domain as �h
δ

= {(xi, y j, zk)||ψ(xi, y j, zk)| < δ} (see Fig. 2(a)). Note that

we should choose δ ≥ √
3h since the computational narrow band domain must contain the interpolation stencil for the closest

points of the ghost points.

We also define an indicator function I as

Ii jk =
{

0 if (xi, yj, zk) ∈ �h
δ
,

1 otherwise.
(4)
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Fig. 2. (a) Schematic illustration of the discrete narrow band domain �h
δ

(indicated by •) and its ghost points ∂�h
δ

(indicated by ◦). Here, the curve S represents

as a solid curve. (b) Expanded illustration of the boxed section in (a). The shaded region indicates the stencil for the discrete Laplacian operator. (c) Schematic

illustration of the interpolation of cp(xijk). The shaded region indicates the interpolation stencil.
Then, we define the ghost points as ∂�h
δ

= {(xi, y j, zk)|Ii jk|∇hIi jk| �= 0} (see Fig. 2(b)), where ∇hIi jk = (Ii+1, jk − Ii−1, jk, Ii, j+1,k −
Ii, j−1,k, Ii j,k+1 − Ii j,k−1)/(2h).

We solve the AC Eq. (1) by using splitting method. First we solve the diffusion equation in the discrete narrow band domain

�h
δ

using the explicit Euler’s method:

φ∗
i jk

− φn
i jk

�t
= �hφ

n
i jk (5)

with the boundary condition on ∂�h
δ
;

φn
i jk = φn(cp(xi jk)). (6)

The numerical closest point of xijk to the surface S is given as

cp(xi jk) = xi jk − ∇h|ψi jk|
|∇h|ψi jk|| |ψi jk|. (7)

Since cp(xijk) is generally not on a grid point, φn(cp(xijk)) is obtained using the trilinearly interpolated value (see Fig. 2(c)). To

compute the interpolation efficiently, we tabulated the interpolation stencil (we only save the smallest index in lexicographical

order) and three fractions for each ghost point before starting time iterations. We have a stability condition, �t ≤ h2/6, which is

not that severe constraint if we are concerned with the numerical accuracy.

Next, with φ∗
i jk

as the solution at t = n�t, we solve the following equation up to t = (n + 1)�t:

φt = φ − φ3

ε2
. (8)

We have the following closed-form solution in the discrete narrow band domain �h
δ

for Eq. (8):

φn+1
i jk

=
φ∗

i jk√
e−2�t/ε2 + (φ∗

i jk
)2(1 − e−2�t/ε2)

. (9)

This scheme is explicit and we only solve the AC Eq. (1) on a narrow band domain, therefore it is very fast. Full rectangular version

of the hybrid explicit scheme for the AC equation will be published elsewhere.

4. Numerical experiments

We perform a series of numerical experiments to demonstrate the accuracy and efficiency of the proposed numerical al-

gorithm. We define the width of the transition layer by using the ε value. From an equilibrium profile φ(x) = tanh (x/(
√

2ε)),
the concentration field φ varies from −0.9 to 0.9 over a distance of about 2

√
2ε tanh

−1 (0.9). Therefore, if we want this value

to be about mh (Choi, Lee, Jeong, & Kim, 2009), then we should take ε as εm = mh/[2
√

2 tanh
−1 (0.9)] ≈ 0.24mh. Unless other-

wise stated, we use ε = ε4.

4.1. Motion by mean curvature on a sphere

We consider the motion of a circular interface on a sphere evolving according to in-surface curvature motion (Ruuth & Merri-

man, 2008). In Fig. 3(a), R and r are radii of the sphere and the circle, respectively. Let V = −1/r be the curvature of the circle, x be
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Fig. 3. Schematic of (a) parameters are on the sphere and (b) detailed description for some part of (a).
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Fig. 4. Convergence test for different mesh size.
the tangential component of V, and u be the component of x toward the center of the circle. Then, we can find that u = − 1
r cos2 θ

from Fig. 3(b). Now, the governing equation for the motion of a circular interface on a sphere is given as:

dr

dt
= u = −1

r
cos2 θ = r2 − R2

rR2
. (10)

By solving Eq. (10), we have the analytic solution for r(t),

r(t) =
√

R2 − (R2 − r2
0
)e

2t

R2 . (11)

To show the convergence test, we adopt difference mesh size n = 21, 61, and 101. Other conditions are same as spatial step

size h = 2/(n − 1), sphere radius R = 1, circle radius r = 1/
√

2, total simulation time T = 0.2 on the computational domain � =
(−1, 1) × (−1, 1) × (−1, 1).

Fig. 4 shows the convergence result with respect to grid size. Each of the mesh sizes (213, 613, and 1013) has the radius value as

0.4809, 0.4859, and 0.4869, respectively. The errors from the analytic radius (0.5041) at t = 0.2 are 0.0232, 0.0182, and 0.0171 on

the mesh 213, 613, and 1013, respectively. Therefore, as we refine the mesh, the numerical result is getting closer to the analytic

radius. Since we have a stability condition, �t ≤ h2/6, we choose the proper �t as 0.1h2 for the simulation.

In this simulation, the surface is defined using signed distance function:

d(x, y, z) =
√

x2 + y2 + z2 − R, (12)

where R is sphere radius 1. And the initial condition is defined by phase-fields function:

φ(x, y, z, 0) = tanh

√
x2 + y2 − z√

2ε
, (13)

where ε = 0.1 is transition layer. We also use other parameters are: circle radius r = 1/
√

2, mesh size n = 51 × 51 × 51, spatial

step size h = 2/(n − 1), time step �t = 0.1h2 on the computational domain � = (−1, 1) × (−1, 1) × (−1, 1). Fig. 5(a)–(c) repre-

sent the evolution for each time (a) t = 0, (b) t = 800�t, and (c) t = 1600�t , respectively. The first column shows the surface

view and second column represents grid view for calculating region only on the sphere.

4.2. Motion by mean curvature on a torus

In this section, we investigate motion by mean curvature on a torus. For all numerical simulation of torus, we use the following

signed distance function as

d(x, y, z) =
√

(
√

x2 + y2 − R)2 + z2 − r, (14)
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Fig. 5. The first column represents the surface view and second column shows grid view at the (a) t = 0, (b) t = 800�t, and (c) t = 1600�t .

Fig. 6. Numerical solutions on the torus with the initial condition (15) at each time t. Red and blue regions denote φ = 1 and φ = −1. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
where R represents the circumferential radius which is the size of the circle that constitutes the center of the torus tube and r

is the tube radius. We take the two radii to be R = 0.7 and r = 0.3. We also use the following parameters as ε = ε4, h = 2/50,

�t = 0.1h2, δ = 1.01
√

3h, and 51 × 51 × 16 grids on the computational domain � = (−1, 1) × (−1, 1) × (−0.3, 0.3).

For the first example, we set the initial condition to be

φ(x, y, z, 0) =

⎧⎨
⎩

1, if
√

x2 + y2 < 0.9 & z > 0 and

1, if
√

x2 + y2 > 0.7 & z < 0
−1, otherwise.

(15)

The initial curve is taken to be the intersection of the torus with the condition (15) as displayed in Fig. 6. Note that φ(x, y, z, t) =
φ(x, y, z, 0) for z < 0.2.

Fig. 6 illustrates the temporal behavior of the interfaces on the surface. In this figure, computational times are written below

each one. The interfaces shrink by mean curvature as time evolves. In the last frame of Fig. 6, the interface reaches to the steady

state.
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Fig. 7. Numerical solutions on the torus with the initial condition (16) at each time t. Red and blue regions denote φ = 1 and φ = −1. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Numerical solutions on the torus with the initial condition (17) at each time t. Red and blue regions denote φ = 1 and φ = −1. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
In the second example, we use the following initial condition as

φ(x, y, z, 0) =
{

1, if
√

x2 + z2 < 1.2 and y + z > 0.1
−1, otherwise.

(16)

Fig. 7 displays the rendered surface of the numerical solution φ at t = 2�t, 300�t, 600�t, 1500�t, and 1800�t, respectively.

As time goes on, the interfaces evolve according to curvature motion. In final frame which represents a steady state, the two

interfaces with ring-shape have zero curvature on the torus.

As third example, we consider the following initial condition as

φ(x, y, z, 0) =
{

1, if
√

(x − 0.7)2 + 0.25z2 < 0.25 and z > 0.0
−1, otherwise.

(17)

Fig. 8 shows the motion by mean curvature on torus at time t. When approaching steady state, the interface approaches a

circle before disappearing.

4.3. Phase ordering on surfaces

Although our primary goal is to simulate motion by mean curvature on surfaces, we present phase ordering on curved

surfaces. Phase separation on curved membranes are intriguing physical phenomena, ranging from nonequilibrium statistical

physics and hydrodynamic theories to cell biology (see Marenduzzo & Orlandini, 2013 and references therein). One example is

lipid bilayers (Schonborn, 1997).

First, we consider the process of phase separation on the surface of a sphere of radius R. The signed distance function

is given as d(x, y, z) =
√

x2 + y2 + z2 − R, where R = 1. Then, the spherical surface is defined as the zero level set, i.e., S =
{(x, y, z)|d(x, y, z) = 0}. The narrow band domain is defined as �δ = {(x, y, z)||d(x, y, z)| < δ}, where δ = 1.1

√
3h. The space step

h = 2R/50 and the time step �t = 0.1h2 are used. The domain is � = (−1 − 4h, 1 + 4h) × (−1 − 4h, 1 + 4h) × (−1 − 4h, 1 + 4h).

The initial condition is φ(x, y, z, 0) = 0.5rand(x, y, z), where rand(x, y, z) is a uniformly distributed random number between −1

and 1. Fig. 9 shows the time evolution of morphologies.

Next, we consider the process of phase separation on the surface of a torus with the signed distance function (14). And we

choose the same value for numerical parameter as in the previous tests in Section 4.2. The initial condition is φ(x, y, z, 0) =
0.5rand(x, y, z), where rand(x, y, z) is a uniformly distributed random number between −1 and 1. Fig. 10 shows the time

evolution of morphologies of torus. As shown in this figure, spinodal decomposition proceeds to completion without arresting

when approaching to steady state.

5. Conclusions

We developed a fast and accurate numerical method for motion by mean curvature of curves on a surface in three-dimensional

space using the Allen–Cahn equation. By adopting operator splitting method, we solved the Allen–Cahn equation on a narrow

band domain. Here, the domain boundary cells are defined by an interpolation algorithm with the closest point method. To solve
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Fig. 9. Temporal evolution of numerical solutions on a sphere. The computational times are shown below each figure.

Fig. 10. Temporal evolution of numerical solutions on a torus. The computational times are shown below each figure.
efficiently, we first solve the heat equation by using an explicit scheme, and then update the solution by using a closed-form

solution. Through various numerical experiments such as motion by mean curvature or phase ordering on sphere and torus, we

showed that the proposed numerical algorithm is computationally efficient and accurate. As a future work, we are planning to

implement the implicit Euler’s method for the heat equation to get rid of the time step size constraint.
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