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We numerically investigate local defectiveness control of self-assembled diblock copolymer patterns through
appropriate substrate design. We use a nonlocal Cahn-Hilliard (CH) equation for the phase separation dynamics
of diblock copolymers. We discretize the nonlocal CH equation by an unconditionally stable finite difference
scheme on a tapered trench design and, in particular, we use Dirichlet, Neumann, and periodic boundary con-
ditions. The value at the Dirichlet boundary comes from an energy-minimizing equilibrium lamellar profile. We
solve the resulting discrete equations using a Gauss-Seidel iterative method. We perform various numerical ex-
periments such as effects of channel width, channel length, and angle on the phase separation dynamics. The
simulation results are consistent with the previous experimental observations.
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1. Introduction

A diblock copolymer is a linear chain consisting of two blocks of different types of monomers bonded
covalently to each other. The two blocks are mixed above the critical temperature; however, the copoly-
mer melt undergoes phase separation below the critical temperature due to the incompatibility of dif-
ferent blocks [1]. As a result of phase separation, periodic structures including lamellae [ZH7], spheres
[2} 3} [8H12l, cylinders [2] 3} 6} [14], hexagons [2} [3} [7, [10} [13H17], and gyroids [2] are observed

in a mesoscopic-scale domain.

r

\

In recent years, self-assembly of block copolymer has come out as a promising patterning tool to over-
come the scaling limits in nano-lithography and generate suboptical lithographic patterns [18]. However,
one of the problems is the lack of complete pattern orientation due to a high density of defects [19]. In
figure [1} we can observe various examples of local defect in the block copolymer. Therefore, it is very
important to control the local defects of self-assembled polymer patterns with the application of these
materials. As the efforts to rectify this, many researches and techniques such as electric fields [20], flow
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Figure 1. Examples of local defects.
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[21], shear application [22H24], thermal treatment [25]], chemically pre-patterned surface (chemoepitaxy)
[26} 27], and topographical confinement (graphoepitaxy) [28] have been carried out to reduce the defect
density in specific pattern-forming block copolymer thin films. Among the controlling method, authors
in [19] proposed an appropriate substrate design and achieved a defect-free pattern formation. In this
paper, we focus on numerically realizing the situation presented in [19] and we describe in detail the
numerical method which is used in the numerical simulations.

We use the mathematical model proposed by Ohta and Kawasaki [29]. Let ¢ be the difference of the
local volume fraction of A and B monomers. Then, the nonlocal Cahn-Hilliard (CH) equation in a two-
dimensional domain is

Ap(x, t b
% = Apx 0 -alpx -], "
- F’((/)(Xr t)) - ezA(,b(X' 1), 2)

where x = (x,y) and ¢ are the spatial and temporal variables, respectively. F(¢) = ().25(4)2 —1)2 is the
Helmholtz free energy, € is the gradient energy coefficient, « is inversely proportional to the square of
the total chain length of the copolymer, and ¢ = [ ¢(x,0)dx/|Q] is the average concentration over the
domain Q [30].

In equation , al¢p(x, t) — @] term indicates the long-range interaction and plays an important part
in pattern formation. If & = 0, then equations (1) and (2) describe the process of the reduction in the total
interfacial energy of a microstructure as the classical CH equation.

The total system energy is given as

a

2
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where G is the Green’s function of —A in Q with periodic boundary conditions, i.e., ~AG(x) = 6 (x). Then,
the evolving equations (1) and (2) can be derived using the H~! gradient flow for the free energy , and
equation (3) can be rewritten as

2
c‘oa(qb):f [F(¢)+€—|ng|2}dx+ Ef |Vw|2dx,
Q 2 2 Ja

where v satisfies —Ay = ¢p — ¢ with periodic boundary conditions [Z].

Now, we will solve equations and on a trench domain. Figure 2| represents the physical do-
main () and boundaries (I';, I'7). On I'y, Dirichlet boundary condition for ¢ and homogeneous Neumann
boundary condition for u are used. On I'y, the periodic boundary condition for both ¢ and p is used.

The rest of this paper is organized as follows. In section 2] we describe the numerical method and so-
lution. In section 3] we present several numerical experiments. Conclusions are summarized in section[4]

I Iy 1 — Fl [o: Dirichlet boundary, i : Neumann boundary]
1 1 - - I'2 [o, 1 : Periodic boundary]
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Figure 2. Illustration of the physical domain (Q2) with boundaries I'; and I',.
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2. Numerical method

2.1. Discretization of domain

First, assume that we have a domain Q as shown in figure |2| The domain Q is defined by the angle
0, reference values a and b for the trench wall as represented in figure 3} Here, the trench walls are
determined with symmetric points (-a, b), (a, b), (—a,—b), and (a,—b). Then, we cover the domain Q by
a rectangular domain Qg = (—Ly, Ly) x (—Ly, Ly) with a Cartesian grid of mesh size h.

Now, we discretize the rectangular domain Qg with the uniform mesh size h = 2Ly/Ny = 2L,/ Ny in
both x- and y-directions. Here, Ny and N, are the number of grid points in x- and y-directions, respec-
tively. We denote cell-corner points as (x;, y;) = (hi, hj) fori=0,...,Nyand j=0,...,N,. Let gbl'.’j and p;?j
be approximations of ¢(x;, ¥, tn) and u(x;, yj, tn), respectively, where f,, = nAt and At is the temporal
step size.

Y
A — I, [o: Dirichlet boundary, i : Neumann boundary]
L:U T = = =T, [ p: Periodic boundary]
! 1
i LY
Al [y, LN
T2, by et ' Iy
M 1
! 0 —>
—Lay 1 L
1 / 70\ / \ 1
I e o) ad=—=0) .
f 1
1 A, i
L N ; S

Figure 3. Illustration of the parameters over the whole domain Qg = (—Ly, Lx) X (—Ly,Ly). 'y and I'»
are boundary of the computational domain which is determined from 6. Trench walls are defined with
symmetric points (—a, b), (a, b), (—a,—b), and (a,—b).

2.2. Numerical solution

In this paper, we apply a non-linearly stabilized splitting scheme [31] to the nonlocal CH equations
and (2) as follows:

n+l _ pn
t vooo_ n+l _ n+l _ 71
= Ml -ael-9), @
3
upt = (onY) - ol - etangl, ®)

where ¢ = injegh (,b(l.’ i / injeg . 1. Here, Qj, is the computational domain which is represented by marked
circle in figure
To solve equations @ and ID we use the Gauss-Seidel iterative method. Given solution <p;1j, let

¢l’.’j+1’° = ¢}, be an initial guess. For each m > 0, we generate the updated solution ¢l'.’j+l’m+l and u;’Jfrl""“
from (p;’;l'm and p?jfrl'm by
n n+l,m+1 n+l,m n+l,m+1 n+l,m
i3 it Ll b +u
1 n+1l,m+1 4 n+l,m+1 _ (pl] n ”1—1,] 'ul+1J ul,]—l ul,]*'l 6
—ta|d;. + 5l =—+ap+ > , (6)
At Y h="t At h
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Figure 4. Inner grid points (») which are on the computational domain Qj, Dirichlet (¢)) and homogeneous
Neumann (u) boundary points (o), and periodic boundary points (O).
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We continue the above iterations until /,-norm error between two successive approximations of ¢ is less
than a given tolerance tol, that is,

||(pn+1,m+l _¢n+l,m||2 < tOl.

2.3. Boundary conditions
For a numerical solution, we consider three different conditions at each boundary as follows:
* ¢ij=1¢*l for x;; €T,
* Vpuij=0forx;; ely.
* ¢oj =¢Pn,+1,j and poj = i, +1,5 for j=1,..., N, + 1.

Here, ||| represents the maximum value of numerical solution at equilibrium state. In subsection
we will describe more details for [|(p*?|| 0.

Near the boundaries, we should use some special formulae. For example, let us consider the position
(x;,yj) in ﬁgure By the Dirichlet boundary condition, we already know the value at A and B. We define

/ /
én / ©B
/ Bh " ,//,,E Hp

S ah| bij Div1, iy h \ph” [
qh
9 4 .
(a,b) bij-1 (a,b) g
@ D)

Figure 5. (a) Dirichlet condition and (b) Neumann condition on curved boundary.
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AP, and ABJ, as the discrete second derivatives near the boundary as follows:

b L .

ABx‘l’ij _ ((/’Hl,]h bij (I’z]ah(/)A) (ah2+ h) ’ ®
b . _ (PB=®ij $ij—¢ij1\(Bhth)7!

A)’J’(pl] - ( Bh - n )( 2 ’ 9)

where 0 < @, f< 1, and ¢4 = ¢ = |¢p*?||. Therefore, the discrete Laplacian operator near the bound-
ary with Dirichlet condition is defined as Agzp;?]ffl = Agx(plf’]ffl + A];y(p;’j“. For other points, the discrete
Laplacian is similarly defined. We also define the discrete Laplacian operator near the boundary with

Neumann boundary condition as A} u?]ﬂ =AY, ,ul'.’j“ + AJI‘,Iyul'.’j“. Here,
Mislj—Mij Mij—Hg)(ah+h|™
ANchtis ( - ) > (10)
N _ (Bp—Rij = Hij-1)(Bh+h\ !
AJ’}’I‘LU - ( ,Bh - h ) ( 2 ’ amn

where @ and § are defined as in figure 5| (a). p, and p, are obtained by using a linear interpolation,
Hp = pli+1,j+ (A —pluijand pg = qu;j+ (1 —q)u; j-1 [see ﬁgure(b)].

2.4. Optimal wavelength having minimum discrete total energy

We describe an algorithm for finding the total energy-minimizing wavelength [1} [4]. We define the
optimal wavelength L* as the period of the hexagonal lattice that has the lowest energy. In other words,
L* means the smallest length having the global minimum of the domain-scaled discrete total energy.
To calculate L*, we solve equations (1) and (2) until a numerical equilibrium state is reached with the
given values of hy, At, €, and a. The initial condition is ¢(x,0) = 0.1cos(2zx/Ly) in Q = (0, L), where
L, starts at 2k, and increases in steps of 24, . Let M be the smallest even integer such that the domain-
scaled total energy £9/L, is minimized. Construct the quadratic polynomial passing the three points
((M=2)hy, 8Y[(M -2)hy]), (Mhy, 8% (Mhy)), and ((M +2)hy, /(M +2)hy]); then, define the op-
timal length L* as the critical point of the polynomial [see figure @] (a)]. For more details, see refer-
ences [1}14].

We define the numerical equilibrium state as that in which the consecutive error is not larger than the
prescribed tolerance, that is, max;<;<n, (|<j>£.‘+1 —qﬁfl) /At <1.0x1075. The maximum value of equilibrium
wave is defined as [|¢*?]lo = maxi<j<n, 7] in ﬁgure@(b).

We replace the Dirichlet problem solution with [|¢®9| o, in this paper.

a A
i—l oprimal length ¢4 :
: L PRI

000000000,

1
ol Ly—2 Ly Lasse °

(a) ®)

Figure 6. (a) Schematic of algorithm to search for the optimal length L*. Here, Lp;_» = (M —2)hy, Ly =
Mhy, and Ly = (M +2)hy. (b) Hllustration of maximum value [|¢®9|  of equilibrium wave.
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3. Numerical experiments

In this section, we perform a number of numerical tests. Throughout the numerical experiments,
unless otherwise specified, we use € = 1/(20 v2), a = 100, L* = 0.375, h = L*/10, At = 0.1h, |¢*Y||lo =
0.6134, and 6 = /4. We examine the evolution of a random perturbation about the average concentration
¢ = 0 on simple rectangle domain Qg = (—25L*,25L*) x (—15L*, 15L*) with N, = 500, N, =300. The initial
condition is set to ¢(x, y,0) = ¢+ 0.01 rand(x, y). Here, rand(x, y) is a random number between —1 and 1.
Also, we use tol = 10~ for stopping criterion of the Gauss-Seidel iteration.

3.1. Discrete total energy
We first define the discrete total energy as
Nx NJ/

2
d _ 2 €
&P =) Z{h F(¢?j)+3

i=1j=1

((tb?+l,j - ¢?j)2 + (¢Zj+l - (P?j)z]

a
4+ —
2

Uy “V?f)z (vl “V?j)z] }

Note that v satisfies —Ay = ¢ — ¢ with periodic boundary conditions [Z].

Figure |7/ shows the temporal evolution of the normalized discrete total energy &%(¢™)/&%(¢?). In
figure [7} we can see that the normalized discrete total energy (which is denoted by the solid line) is
nonincreasing as time proceeds. Moreover, the four small figures represent the numerical solution at
times ¢ = 30At, 100At, 700A¢, 2000At, respectively.

Figure 7. Time evolution of the normalized discrete total energy éad(q)”)/ gd((po). Here, the small figures
indicate the concentration field ¢ at times ¢ = 30A¢, 100At, 700A¢, 2000A ¢, respectively.

3.2. The effect of channel width

To investigate the effect of the channel width, we fix a = 5L* with b=2L* and b =5L*. Figures|§|(a)
and (b) show the temporal evolution of ¢ with the trench widths 2b = 4L* and 2b = 10L*, respectively.
We can observe that the self-assembled pattern is completely defect-free and is aligned parallel to the
trench walls within the narrow trench area; all the defects reside in the wider regions on either side,
which is consistent with the experimental results [19].
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(a)

)]

t=30At t =100At t=2000A¢

Figure 8. The effect of different trench width: (a) 4L* and (b) 10L*. Evolution times are given below each
figure.

3.3. The effect of channel length

In this section, we simulate two cases with respect to a narrow channel length. For this test, we use
two different values a =4.5L* and a = 9L* when we fix b = 4.5L*. The numerical results can be seen in
figure[9] Similarly to the previous tests, we can see that the numerical solution in the narrow channel has
the defect-free lamella pattern.

(@)

()

t=30At¢ t =100At t=2000A¢

Figure 9. The effect of different trench length: (a) 9L* and (b) 18L*. Evolution times are given below each
figure.

3.4. The effect of angle

To see the dynamics of the angle, we only change the angle as 6 = 7/3, n/4, and 7/6 with a= b =5L"*.
Figure [I0] represents the temporal evolution of pattern formation in channels with respect to the angle.
In all three cases, we observe that the numerical solution in the narrow channel has aligned lamella
patterns parallel to the trench walls. Also, within the narrow trench region, the self-assembled pattern is
defect-free unlike the side region where all the defects are located.

Figure[11)shows the profiles of ¢ at equilibrium state for each € = 0.02, 0.03, and 0.04.

From the result in figure as € value is increasing, we observe that the amplitude of ¢ is smaller
and the wavelength is wider.
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(a)

(b)

(©)

t=40At t=100At t=2000A¢

Figure 10. The effect of the angle: (a) 8 = /3, (b) n/4, and (c) 7/6. Evolution times are given below each
figure.

3.5. Comparison of Dirichlet and Neumann boundary conditions

In this section, we compare numerical results by the Dirichlet and Neumann boundary conditions.
We have the comparison test on the same geometry shown in figure [I0] (c). Figure [12|(a) shows the tem-
poral evolution of ¢ when applying Dirichlet and homogeneous Neumann conditions for ¢ and p on the
boundary I'y, respectively. Figure 12| (b) represents the temporal evolution of ¢) when applying homoge-
neous Neumann condition for ¢ and p on the boundary I';. As we expected, we obtain the lamella pattern
in the narrow channel when we apply the Dirichlet boundary condition on I';. However, the numerical
solution with the zero homogeneous boundary condition for ¢» has many defects in the narrow channel
and a contact angle of 90° on all boundaries.

1
d) ,,,, S e=0.02
L. ---e=10.03 .
—e=004| - Rt

0 0.1 0.2 0.286 0.346 0.396
x

Figure 11. Profiles of ¢ at the equilibrium state when € = 0.02, 0.03, and 0.04. We reprinted from [35],
with permission from the Current Applied Physics.
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@

()]

t=40At t=100At t=2000A¢

Figure 12. Time evolution of ¢) when applying (a) the Dirichlet and (b) the homogeneous Neumann bound-
ary condition for ¢ on I'y. The other boundary conditions are used to be equal to the previous examples.
Here, we denote the simulation time on the bottom of figures columns line.

4. Conclusions

In this paper, we numerically investigated the local defectiveness control of self-assembled diblock
copolymer patterns through appropriate substrate design. We used a nonlocal Cahn-Hilliard equation
for the phase separation dynamics of diblock copolymers. We discretized the nonlocal CH equation by
an unconditionally stable finite difference scheme on a tapered trench design and, in particular, we used
Dirichlet, Neumann, and periodic boundary conditions. The value at the Dirichlet boundary is obtained
from energy-minimizing wavelength. We solved the resulting discrete equations using the Gauss-Seidel
iterative method. We performed various numerical experiments to know the effect of the channel width,
length, and angle. Our simulation results were consistent with real experimental observations.
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UncnoBe paocnig>keHHA KepyBaHHSA JIOKaNbHO AePeKTHICTIo
CTPYKTYp Ai6bnok-kononimepis

A MoHr, 1. Yoi, 0. Kim

dakynbTeT MaTemaTuku, Kopelicbknid yHiBepcuteT, Ceyn 136-713, Pecny6nika Kopes

MposejeHO YNC0BE AOCNIAKEHHA KepyBaHHA JI0KaNbHOW AedeKTHICTI0O cCaMoopraHizoBaHnX CTPYKTYp Ai610K-
KornosiiMepie 3a AOMOMOroH BiAMOBIAHOI KOHCTPYKLi cybcTpaTy. BUKOPUCTOBYETLCA HeOKanbHe PiBHSAHHS
KaHa-Xinnapga ans AnHamikun ¢pa3oBoro po3gineHHs gibnok-kononimepis. 34iicHeHO AUCKPETM3aL,0 HeNoKaNb-
HOrO PiBHAAHHA 3 BUKOPMUCTaHHSAM 6e3yMOBHO CTilikoi CXeMM CKiHYeHHOT pPi3HMLI Ha 3BYXXeHill kaHaBLii 3pa3ka i,
30KpeMa, BUKOPUCTaHO Kpaiiosi ymoBy Jlipixne, HotoMaHa i nepioAnyHi rpaHNYHi yMOBM. 3HaYeHHS Npu Kpaiio-
BMX yMoBax Jipixne oTpUMaHO 3rigHO 3 PiBHOBaXHUM NamenapHUM npodinem, Lo BigNoBiAae eHepreTuyHo-
My MiHiMyMy. My po3B'A3yeMO OTpVMaHi ANCKPETHi PiBHAHHSA, BUKOPUCTOBYHOUM iTepaTUBHUIA MeTog laycca-
3eligens. MpoBejeHO Pi3Hi YMCIOBI eKCMePUMEHTK, Taki AK BMIUB LUMPWHW KaHany, AOBXMUHW KaHany Ta KyTa
Ha AWHaMiKy $a30BoOro po3gineHHs. PesynbTaTin CUMyAALIA BiANOBIAaOTbL NoNepeiHiM ekcneprMeHTaNbHUM
CroCTEPeXEeHHAM.

KntouoBi cnoBa: 4i6s10k-kornonimepy, HesokanbHe piBHAHHA KaHa-Xinnapaa, kepyBaHHs 10KafbHO
AepekTHicTo
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