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We present an efficient numerical scheme for the conservative Allen–Cahn (CAC) equation 
on various surfaces embedded in a narrow band domain in the three-dimensional space. 
We apply a quasi-Neumann boundary condition on the narrow band domain boundary 
using the closest point method. This boundary treatment allows us to use the standard 
Cartesian Laplacian operator instead of the Laplace–Beltrami operator. We apply a hybrid 
operator splitting method for solving the CAC equation. First, we use an explicit Euler 
method to solve the diffusion term. Second, we solve the nonlinear term by using a closed-
form solution. Third, we apply a space–time-dependent Lagrange multiplier to conserve 
the total quantity. The overall scheme is explicit in time and does not need iterative 
steps; therefore, it is fast. A series of numerical experiments demonstrate the accuracy 
and efficiency of the proposed hybrid scheme.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Allen–Cahn (AC) equation is a second-order nonlinear parabolic partial differential equation, which was originally 
proposed by Allen and Cahn [1] to describe the phase separation in binary alloys. The classical AC equation is

∂φ

∂t
(x, t) = −M

(
F ′(φ(x, t))

ε2
− �φ(x, t)

)
. (1)

The AC equation has been used to model many phenomena such as crystal growth [2,3], image inpainting [4,5], image 
segmentation [6,7], and tumor growth [8] on flat surfaces. Moreover, it has been studied on non-flat surfaces [9]. Although 
the conservative Allen–Cahn (CAC) equation has been solved and studied on flat surfaces [10–13], to the best of authors’ 
knowledge, there is no research work that has attempted to solve this equation on non-flat surfaces.

Therefore, the main purpose of this study is to develop a fast and computationally efficient finite difference method 
for the CAC equation on non-flat surfaces in three-dimensional space. The problem for partial differential equations on the 
surfaces has been studied in various fields such as image processing [14,15] and biological modeling [15–17]. Therefore, 
solving the CAC equation on surfaces is an important issues, both in the geometrical and numerical sense. We employ 
a hybrid explicit numerical method, which is based on an operator splitting method and we solve the resulting discrete 
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Fig. 1. (a) Bunny surface, (b) slice data of the band domain, (c) part of the bunny’s ear in (b), definition of the Laplacian using the points on the shaded 
region, (d) closest points cp(x1) and cp(x2) for boundary points x1 and x2.

equations on a narrow band domain. We use the idea of the closest point method [18] to define the boundary condition. 
The numerical results demonstrated that the proposed algorithm is accurate and efficient.

The rest of the paper is structured as follows. In Section 2, we describe the governing equation, i.e., the CAC equation on 
a narrow band domain. In Section 3, we provide the numerical scheme and algorithm. We present the various numerical 
results in Section 4. Finally, in Section 5, we provide the conclusion.

2. The conservative Allen–Cahn equation

In this section, we describe the CAC equation [13]

∂φ

∂t
(x, t) = − F ′(φ(x, t))

ε2
+ �φ(x, t) + β

√
F (φ(x, t)), (2)

where φ(x, t) is the order parameter, 
√

F (φ) = 0.5|φ2 − 1|, ε is the thickness of the transition layer, and β is the Lagrange 
multiplier used for conserving the total mass. Let S be a smooth surface in R3 and �δ be a neighborhood of S which is 
defined as �δ = {y|x ∈ S, y = x +θn(x) for |θ | < δ} where n is a unit normal vector on surface S and δ is a positive constant.

We describe how to find the boundary points by using the closest point method. In the numerical simulation section, 
we will show a test that solves the CAC equation on the bunny. We will explain how to define the Laplacian and boundary 
condition by using that example. To help the reader understand the idea, we will explain how the algorithm works in 
two-dimensional space. Fig. 1(a) shows the surface of the bunny, and we define surface S , boundary ∂�δ , band width 2δ, 
and band domain �δ , which is denoted by the shaded region in Fig. 1(b). When we calculate �hφn

i jk , the boundary values 
at the empty circles shown in Fig. 1(c) are needed. For each point x ∈ ∂�δ , using a trilinear interpolation, we define the 
closest point function cp : ∂�δ → S , which assigns the value of the closest point cp(x, t), as shown in Fig. 1(d). Therefore, 
we define the boundary condition as

φ(x, t) = φ(cp(x), t) on ∂�δ. (3)

In the next section, we describe how to solve the CAC equation on the narrow band domain.

3. Numerical solution

In this section, we represent the numerical schemes for the CAC equation on the narrow band domain, �δ . The CAC 
equation is discretized on the three-dimensional domain � = (a, b) × (c, d) × (e, f ). The uniform spatial step size is h = (b −
a)/Nx = (d − c)/N y = ( f − e)/Nz , where Nx, N y , and Nz are the number of cells in the x-, y-, and z-directions, respectively. 
Discrete domain �h is defined as �h = {xi jk = (xi, y j, zk) = (a + hi, c + hj, e + hk)

∣∣0 ≤ i ≤ Nx, 0 ≤ j ≤ N y, 0 ≤ k ≤ Nz}, and 
�h

δ = {xi jk
∣∣|ψi jk(xi jk)| < δ} is the discrete narrow band domain, where ψ is a signed distance function. The narrow band 

domain must contain the stencil as in Fig. 1(c); therefore, we should take δ ≥ √
3h. Let the boundary points be defined as 

∂�h
δ = {xi jk

∣∣Ii jk|∇h Ii jk| 
= 0}, where ∇h Ii jk = (Ii+1, jk − Ii−1, jk, Ii, j+1,k − Ii, j−1,k, Ii j,k+1 − Ii j,k−1)/(2h). Here, Ii jk = 0 if xi jk ∈ �h
δ ; 

otherwise, Ii jk = 1.
Let φn

i jk be the approximations of φ(xi jk, n�t), where �t = T /Nt is the time step, T is the final time, and Nt is the total 

number of time steps. In �h
δ , we define a discrete L2-norm error as ‖φ‖L2 =

√
1

#�h
δ

∑
xi jk∈�h

δ
φ2

i jk , where #�h
δ is the number 

of points on the band. We consider the discretization of the CAC Eq. (2). First, we solve the AC equation which is obtained 
by using an operator splitting method. We solve the diffusion term on the narrow band domain �h

δ by using an explicit 
Euler method with the boundary condition φn

i jk = φn(cp(xi jk)) on ∂�h
δ :

φ∗
i jk − φn

i jk

�t
= �hφ

n
i jk. (4)

Here, we use the standard Laplacian �hφi jk = (φi+1, jk + φi−1, jk + φi, j+1,k + φi, j−1,k + φi j,k+1 + φi j,k−1 − 6φi jk)/h2.
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Note that we can use a fully implicit or a Crank–Nicolson-type semi-implicit numerical scheme for the diffusion equation. 
In this work, we use a fully explicit scheme for simplicity and accuracy. We define the closest point cp(xi jk) as

cp(xi jk) = xi jk − ∇h|ψi jk|
|∇h|ψi jk|| |ψi jk|, (5)

where ψ is a signed distance function. The closet point cp(xi jk) is generally not on a grid point. Therefore, we use a trilinear 
interpolation algorithm to obtain the values of φn(cp(xi jk)). Next, we solve the reaction term from the following closed-form 
solution on the discrete narrow band domain:

φ
n+1,∗∗
i jk = φ∗

i jk√
e−2�t/ε2 + (φ∗

i jk)
2(1 − e−2�t/ε2

)
. (6)

Finally, we conserve the total mass. Let

φn+1
i jk = φ

n+1,∗∗
i jk + β

√
F (φ

n+1,∗∗
i jk ), (7)

where

β =
∑

xi jk∈�h
δ

(φ0
i jk − φ

n+1,∗∗
i jk )

/ ∑
xi jk∈�h

δ

√
F (φ

n+1,∗∗
i jk ). (8)

Here, we use the total mass conservation constraint, 
∑

xi jk∈�h
δ
φ0

i jk = ∑
xi jk∈�h

δ
φn+1

i jk . Our mass-correction step is only cor-

rected on the interfacial transition layer. However in the previous research [19], the mass was corrected by shifting all the 
phase-field values. Since we solve the CAC equation only on the narrow band domain and use a fully explicit scheme, the 
computational cost is low.

As a similar method, there is a level set-based Eulerian method for solving partial differential equations on general 
geometries [20]. There are a couple of differences between our proposed algorithm and the one in [20]. Whenever the 
stencil of the numerical schemes needs a grid point outside the narrow band, ∇ψ · ∇φ = 0 is used to prescribe the value of 
φ at that grid point. For the AC equation without the Lagrange multiplier, Eq. (1), the following modified equation is used:

∂φ

∂t
= − F ′(φ)

ε2
+ ( P̃∇) · ( P̃∇φ) + ∇ · (∇ψ ⊗ ∇ψ∇φ), (9)

where P̃ = (I − ψ D2ψ)−1(I − ∇ψ ⊗ ∇ψ) and D2ψ is the Hessian of ψ . For more details, see [20]. Compared to this level 
set-based method, our proposed algorithm is simpler and can naturally deal with the mass conservation property by using 
the discrete Lagrange multiplier, β

√
F (φ

n+1,∗∗
i jk ), in Eq. (7).

4. Numerical experiments

We show a number of numerical experiments to demonstrate the accuracy and efficiency of the proposed numerical 
algorithm. In an equilibrium profile, φ varies from −0.9 to 0.9 over a distance of about 2

√
2ε tanh−1(0.9). If we take ε as 

εm = mh/[2√
2 tanh−1(0.9)] ≈ 0.24mh, we have approximately mh transition layer [21]. Unless otherwise stated, we use the 

following parameters on the computational domain � = (−1.4, 1.4) × (−1.4, 1.4) × (−1.4, 1.4) in all numerical simulations: 
ε = ε4, mesh size of 141 × 141 × 141, spatial step size h = 0.02, time step size �t = 0.1h2, and narrow band half-width 
δ = 1.1

√
3h.

4.1. Quantitative comparison

In this section, we quantitatively compare the numerical results of our algorithm with the analytic solutions to show the 
accuracy. We consider two spherical caps on a sphere of radius R (see Fig. 2). Here, O is the center of the sphere.

Let R1(t) and R2(t) be the radii of two spherical caps at time t . Let l1(t) = Rθ1(t) and l2(t) = Rθ2(t) be the arc lengths 
at time t , where θ1(t) = sin−1[R1(t)/R] and θ2(t) = sin−1[R2(t)/R]. Let us assume R1(0) > R2(0); then, we can expect that 
R1(t) increases until R2(t) becomes zero by the dynamics of the CAC equation. Let

A(t) = 2π R2[1 − cos θ1(t)] + 2π R2[1 − cos θ2(t)]
be the sum of the areas of the two spherical caps, which is constant by the conservation property, i.e., dA(t)/dt = 0. 
Therefore, we obtain

sin θ1(t)
dθ1(t) + sin θ2(t)

dθ2(t) = 0. (10)

dt dt
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Fig. 2. Two spherical caps on a sphere of radius R .

Fig. 3. Temporal evolutions of two different spherical caps on the surface of the sphere with the initial condition φ(x, y, z, 0) in Eq. (15). The computational 
times are shown below for each figure.

We extend the evolution equations [22,23] for the case of a flat domain to the ones on a spherical domain. The curvature 
of the circle with the radius R1 is 1/R1. The tangential component of the curvature on the sphere is cot θ1/R . Therefore, we 
can write the evolution equations of the arc lengths, l1(t) and l2(t), as

dl1
dt

= −cot θ1

R
+ β(θ1, θ2), (11)

dl2
dt

= −cot θ2

R
+ β(θ1, θ2), (12)

where β is the mass conservation factor. By substituting Eqs. (11)–(12) into Eq. (10), we obtain the mass conservation factor 
β as follows:

β(θ1, θ2) = cos θ1 + cos θ2

R(sin θ1 + sin θ2)
.

We can rewrite Eqs. (11) and (12) in terms of the radian angles:

dθ1

dt
= −cot θ1

R2
+ cos θ1 + cos θ2

R2(sin θ1 + sin θ2)
, (13)

dθ2

dt
= −cot θ2

R2
+ cos θ1 + cos θ2

R2(sin θ1 + sin θ2)
. (14)

For a quantitative comparison, we compute the radii R1(t) and R2(t) of the numerical solution with three different space 
and time step sizes. We set R = 1, and the initial condition as R1(0) = 0.8 and R2(0) = 0.5, i.e.,

φ(x, y, z,0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tanh

(
0.8 − √

x2 + y2
√

2ε

)
, z ≥ 0

tanh

(
0.5 − √

x2 + y2
√

2ε

)
, z < 0.

(15)

Note that Eq. (15) represents the two different spherical caps shown in Fig. 3(a). Fig. 3 shows the temporal evolution of 
two spherical caps on a surface. In accordance with our expection, the larger one grows and the smaller one shrinks until 
it disappears (Fig. 3(d)).
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Fig. 4. Convergence of radii R1 and R2 with different space step size h. Here, the analytic radii are represented by the thick lines.

Table 1
Error and order of the numerical solutions by the proposed scheme with �t = 0.1h2 at T = 0.176. Note that the 
analytic radii are R1(T ) = 0.84690 and R2(T ) = 0.35658.

h 0.08 0.04 0.02

Radius (R1) 0.79983 0.83522 0.84994
Error 0.04707 0.01168 0.00305
Order 2.01110 1.93827

Radius (R2) 0.49660 0.39890 0.34552
Error 0.14002 0.04232 0.01106
Order 1.72626 1.93601

Fig. 5. The evolutions on the surface of the sphere with the initial condition φ(x, y, z), representing the three lens shapes in Eq. (16). The computational 
times are shown below for each figure.

Fig. 4 shows the temporal evolutions of the radii R1 and R2 with different space step size h. Here, the analytic radii, 
which are approximated by using a fourth-order Runge–Kutta method [24] for Eqs. (13) and (14), are represented by the 
thick lines. Table 1 represents the errors and orders of the numerical solutions by the proposed scheme with different space 
step size h and time step �t = 0.1h2 at T = 0.176.

Table 1 indicates that the numerical solutions R1 and R2 obtained using our scheme are almost second-order accurate 
in space and first-order accurate in time.

4.2. Evolution on surfaces

Next, we show the evolution of three spherical caps with different sizes on the unit sphere. In this test, the initial 
condition is set as follows:

φ(x, y, z,0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tanh
(

R1−√
y2+z2√
2ε

)
, if x > 0.5,

tanh
(

R2−
√

x2+z2√
2ε

)
, if y > 0.5,

tanh
(

R3−√
x2+y2√
2ε

)
, if z > 0.5,

(16)

where R1 = 0.3162, R2 = 0.2236, and R3 = 0.2774. Fig. 5 shows the temporal evolutions. In the figure, we can see that the 
smaller spherical caps shrink and the largest spherical cap survives in the long run.
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Fig. 6. The times are shown below for each figure.

Fig. 7. The initial condition is a band on the torus. The times are shown below for each figure.

Fig. 8. (a) Shape of the torus, (b) part of (a) for the y = 0 plane.

We also simulate the evolutions on a torus embedded in the computational domain � = (−1.4, 1.4) × (−1.4, 1.4) ×
(−0.5, 0.5). The major and the minor radii of the torus are 0.7 and 0.3, respectively. The initial condition is defined as

φ(x, y, z,0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tanh

(
0.2 − √

(x − 0.5)2 + (y − 0.5)2
√

2ε

)
, x > 0, y > 0, z > 0,

tanh

(
0.15 − √

(x + 0.5)2 + (y + 0.5)2
√

2ε

)
, x < 0, y < 0, z > 0.

(17)

In Fig. 6, the smaller one shrinks and the larger one grows, and then, eventually, the smaller one disappears.
Next, we consider a band on the torus. Fig. 7(a) shows the initial condition on � = (−1.4, 1.4) ×(−1.4, 1.4) ×(−0.5, 0.5):

φ(x, y, z,0) =
{

1 if 0.1 < z < 0.25,

−1 otherwise.
(18)

Fig. 7 shows the temporal evolution of the initial band on the torus.
To understand the evolution dynamics on the torus surface, let us consider a longitude curve like that shown in Fig. 8(a).
Fig. 8(b) represents a meridian curve on the xz-plane at y = 0. The curvature at point (x, 0, z) of the longitude curve is 

(−1/x, 0, 0). The unit tangent vector at (x, 0, z) is (−z/r, 0, (x − R)/r). Therefore, the tangential component of the curvature 
is (

−1

x
,0,0

)
·
(

− z

r
,0,

x − R

r

)
= z

rx
. (19)

Fig. 9 shows the magnitude of z/rx at each point x for R − r ≤ x ≤ R + r, with R = 0.7 and r = 0.3. Here, z =√
r2 − (R − x)2. Fig. 9 explains the dynamic direction of the band in Fig. 7.
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Fig. 9. Magnitude of z/rx at each point x for R − r ≤ x ≤ R + r, with R = 0.7 and r = 0.3. Here, z = √
r2 − (R − x)2.

Fig. 10. Comparison of the effect of band width: (a) b = 0.1 and (b) b = 0.15.

4.3. Effect of band width on the torus

In this section, we investigate the effect of band width on the equilibrium state. For the numerical test, we only change 
the band width (2b) and fix the other parameters (i.e., 2513 mesh and spatial step size h = 0.0112) on the computational 
domain (−1.4, 1.4) × (−1.4, 1.4) × (−1.4, 1.4). The initial condition is defined by

φ(x, y, z,0) =
{

1 if − b < x < b and y < 0,

−1 otherwise.
(20)

When the band width is 0.2, the band is snapped and becomes a topological disc, as shown in Fig. 10(a). However, 
snapping does not occur in the case of a band width of 0.3, as shown in Fig. 10(b).

4.4. Phase separation on a sphere

We perform the phase separation on the surface of a unit sphere. Fig. 11 shows the time evolution of phase on the 
sphere. The initial conditions are φ(x, y, z, 0) = −0.4 + 0.1rand() and φ(x, y, z, 0) = 0.1rand(x, y, z) for Fig. 11(a) and 
Fig. 11(b), respectively, where rand(x, y, z) is a uniformly distributed random number between −1 and 1.

4.5. Phase separation on the torus

We simulate the phase separation on the torus with a signed distance function defined as

ψ(x, y, z) =
√

(C − R)2 + z2 − r, (21)

where C = √
x2 + y2, R is the distance from the center of the tube to the center of the torus, and r is the radius of the 

tube. We use R = 0.7 and r = 0.3. Fig. 12 shows the phase separation on the torus with the following initial conditions: 
φ(x, y, z) = −0.4 + 0.1rand(x, y, z) and φ(x, y, z) = 0.1rand(x, y, z).
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Fig. 11. Temporal evolutions on the surface of the sphere with the initial conditions φ(x, y, z) = −0.4 + 0.1rand(x, y, z) and φ(x, y, z) = 0.1rand(x, y, z). The 
computational times are shown below for each figure.

Fig. 12. The evolutions on the surface of the torus with the initial conditions φ(x, y, z) = −0.4 + 0.1rand(x, y, z) on the top row and φ(x, y, z) =
0.1rand(x, y, z) on the bottom row. The computational times are shown below for each figure.

4.6. Phase separation on a spindle

We simulate the phase separation on the surface of a spindle with different average concentrations. The spindle shape 
is defined by the following parametric equations: r = cos x, x(r, θ) = x, y(r, θ) = r cos θ , and z(r, θ) = r sin θ , where |x| ≤
π/2 and θ ∈ [0, 2π). In this simulation, we use h = 0.0379 on � = (−200h, 100h) × (−32h, 32h) × (−32h, 32h). Fig. 13
shows the time evolution of the spinodal decomposition on the surface of a spindle with two different initial conditions: 
φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z) and φ(x, y, z, 0) = 0.1rand(x, y, z).

4.7. Phase separation on a funnel

In this section, we simulate the phase separation on the funnel shape which is defined by the following parametric 
equations: x(r, θ) = r cos θ , y(r, θ) = r sin θ , and z(r, θ) = ln r, where r > 0 and θ ∈ [0, 2π). We use h = 0.0121 on the com-
putational domain � = (−1.2, 1.2) ×(−1.2, 1.2) ×(−2.4, 1.2). The initial conditions are φ(x, y, z, 0) = −0.4 +0.1rand(x, y, z)
and φ(x, y, z, 0) = 0.1rand(x, y, z). Figs. 14(a) and (b) show the results of the temporal evolutions on the funnel shape with 
an average concentration of −0.4 and 0, respectively.

4.8. Phase separation on a bunny

In this section, we perform the phase separation on the surface of a bunny with different average concentrations. To 
perform the numerical simulation, we use h = 0.5 on � = (0, 68.5)3. Fig. 15 shows the temporal evolution of the spinodal 
decomposition on the surface of the bunny with two different initial conditions: φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z) and 
φ(x, y, z, 0) = 0.1rand(x, y, z).
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Fig. 13. Temporal evolution of the phase separation on the spindle shape. The initial conditions are (a) φ(x, y, z) = −0.4 + 0.1rand(x, y, z) and 
(b) φ(x, y, z) = 0.1rand(x, y, z).

Fig. 14. Temporal evolution of the phase separation on the funnel shape. The initial conditions are (a) φ(x, y, z) = −0.4 +0.1rand(x, y, z) and (b) φ(x, y, z) =
0.1rand(x, y, z).

4.9. Comparison study with an implicit scheme

In this section, we compare the computational costs for our proposed algorithm and an implicit algorithm in order 
to demonstrate the speed and efficiency of the proposed algorithm. For the comparison study, we consider a well-known 
nonlinear convex splitting scheme [25], which is unconditionally gradient stable. We take the following two steps to solve 
the CAC Eq. (2):

φ
n+1,∗
i jk − φn

i jk

�t
= φn

i jk − (φ
n+1,∗
i jk )3

ε2
+ �hφ

n+1,∗
i jk , (22)

φn+1 = φ
n+1,∗ + β

√
F (φ

n+1,∗
), (23)
i jk i jk i jk
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Fig. 15. Morphological evolutions on the surface of the bunny with the initial conditions (a) φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z) and (b) φ(x, y, z, 0) =
0.1rand(x, y, z). The computational times are shown below for each figure.

Fig. 16. Temporal evolutions of two radii by the explicit and implicit schemes. The CPU times are shown in parentheses.

where β = ∑
xi jk∈�h

δ
(φ0

i jk − φ
n+1,∗
i jk )

/∑
xi jk∈�h

δ

√
F (φ

n+1,∗
i jk ). Here, we use the Gauss–Seidel iterative method to solve Eq. (22). 

Let φn+1,∗,s
i jk and φn+1,∗,s+1

i jk be the approximation of φn+1,∗
i jk before and after one Gauss–Seidel iteration, respectively. Since 

(φ
n+1,∗
i jk )3 in Eq. (22) is nonlinear, we linearize it as follows:

(φ
n+1,∗,s+1
i jk )3 = 3(φ

n+1,∗,s
i jk )2(φ

n+1,∗,s+1
i jk ) − 2(φ

n+1,∗,s
i jk )3.

Then, we rearrange Eq. (22) as the Gauss–Seidel iterative form:(
1

�t
+ 3(φ

n+1,∗,s
i jk )2

ε2
+ 6

h2

)
φ

n+1,∗,s+1
i jk =

(
1

�t
+ 1

ε2

)
φn

i jk + 2(φ
n+1,∗,s
i jk )3

ε2

+ φ
n+1,∗,s+1
i−1, jk + φ

n+1,∗,s
i+1, jk + φ

n+1,∗,s+1
i, j−1,k + φ

n+1,∗,s
i, j+1,k + φ

n+1,∗,s+1
i j,k−1 + φ

n+1,∗,s
i j,k+1

h2
.

In this study, we update the new solution φn+1
i jk when the l2-norm of the consecutive error, ‖φn+1,∗,s+1

i jk − φ
n+1,∗,s
i jk ‖2, is less 

than the tolerance value, tol = 10−6. Now, we compare the analytic solution with the numerical results by the proposed 
scheme and the implicit convex splitting scheme. We use the same initial condition as in Section 4.1. Fig. 16 represents 
the time evolution of two radii with the explicit and implicit schemes. The analytic solution is shown with the solid line. 
Moreover, we put the computational times in the legend to show the efficiency of the explicit scheme.

It is well known that one of the drawbacks of an explicit scheme is the severe time step restriction for stability. For 
example, a fourth-order nonlinear equation such as the Cahn–Hilliard equation [25] has a �t = O (h4) time step constraint 
for the explicit scheme. However, it turns out that a �t ≤ h2/6 time step constraint in three-dimensional space for the CAC 
equation is not a severe constraint if we consider the accuracy of the numerical solutions. As shown in Fig. 16, it only takes 
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Fig. 17. Stability of the numerical solutions by the explicit scheme with different time step sizes.

320 s of CPU time for the explicit scheme, whereas it takes 1085 s of CPU time for the implicit scheme with �t = 0.1h2. If 
we compare the results from the implicit scheme (�t = 0.8h2) and the explicit scheme (�t = 0.1h2), we can see that the 
result from the latter is more accurate than from the former with a comparable CPU time.

In our algorithm, we have the time step restriction as �t ≤ h2/6 ≈ 0.1667h2 when we solve the diffusion Eq. (4). Fig. 17
shows the stability of the numerical solutions by the proposed scheme with different time step sizes. To show the stability, 
we use four different time step sizes: �t = 0.1h2, 0.16h2, 0.17h2, and 0.18h2. As shown in Fig. 17, we can see the stable 
solutions when �t ≤ 0.17h2. One of the reasons why �t = 0.17h2 gives a stable solution is that the second step of the 
proposed algorithm damps an unstable solution and stabilize the solution.

5. Conclusions

We performed numerical simulations on various three-dimensional surface shapes with the CAC equation. For improving 
the efficiency and lowering the computational cost, we employed a narrow band domain and solved the equation on that 
domain. On the narrow band domain boundary, we applied a quasi-Neumann boundary condition, which is defined by using 
the closest point method. To solve the CAC equation, we used the hybrid operator splitting method, which consists of three 
steps. First, we solved the diffusion term by using an explicit Euler method and then updated the nonlinear term by using a 
closed-form solution. Lastly, to conserve the total concentration, we applied the space–time-dependent Lagrange multiplier. 
The overall scheme is fully explicit in time and does not need iterative steps; therefore, it is fast. A series of numerical 
experiments with various initial conditions on the sphere, torus, spindle, funnel, and bunny shapes demonstrated the effec-
tiveness and accuracy of the proposed hybrid scheme. In this paper, we used uniform meshes. In a future research, we plan 
to consider the body-fitted coordinate on a non-uniform mesh and triangular surface mesh for possible improvements.
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