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In this paper, we propose a verification method for the convergence rates of the numerical solutions for parabolic equations.
Specifically, we consider the numerical convergence rates of the heat equation, the Allen–Cahn equation, and the Cahn–Hilliard
equation. Convergence test results show that if we refine the spatial and temporal steps at the same time, then we have the second-
order convergence rate for the second-order scheme. However, in the case of the first-order in time and the second-order in space
scheme, we may have the first-order or the second-order convergence rates depending on starting spatial and temporal step sizes.
Therefore, for a rigorous numerical convergence test, we need to perform the spatial and the temporal convergence tests separately.

1. Introduction

Many numerical schemes for differential equations have been
developed and tested in terms of convergence rates. If an
analytic solution is available, then we can use it as a reference
solution for the convergence test. Otherwise, we can use a
reference solution obtained from a numerical solution with
very fine space and time step sizes. Some scientific journal
considers manuscripts only if accuracy and convergence of
numerical solutions are established by discussion of results on
multiple grids. Recently, there have beenmany research stud-
ies on the second-order convergence schemes for parabolic-
type partial differential equations [1–12]. To demonstrate the
second-order convergence, some authors [1–3] showed the
convergence by refining the spatial and temporal steps at the
same time; some authors in [4–10] showed the convergence
by refining the spatial and temporal steps separately.

In this work, we will show that we may have the second-
order convergence even though the numerical scheme is the
first-order accurate in time and the second-order accurate
in space if we refine the spatial and temporal steps at the

same time. Therefore, for a rigorous numerical convergence
test, we need to perform the spatial and the temporal
convergence tests separately. We validate these claims from
the convergence rates of the numerical solutions for parabolic
equations. Specifically, we consider the convergence rates of
the numerical schemes for the heat equation, the Allen–Cahn
(AC) equation, and the Cahn–Hilliard (CH) equation, which
have been studied theoretically bymany researchers in recent
years [14–20].

The first equation is the heat equation onΩ = (0, 2𝜋):
𝜕𝜙 (𝑥, 𝑡)𝜕𝑡 = 𝜕2𝜙 (𝑥, 𝑡)𝜕𝑥2 for 𝑡 > 0 (1)

with the zero Neumann boundary condition 𝜙𝑥(0, 𝑡) =𝜙𝑥(2𝜋, 𝑡) = 0.
The second equation is the AC equation [22, 23] on Ω =(0, 1):

𝜕𝜙 (𝑥, 𝑡)𝜕𝑡 = 𝐹󸀠 (𝜙 (𝑥, 𝑡))
𝜖2 + Δ𝜙 (𝑥, 𝑡) for 𝑡 > 0 (2)
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Figure 1: Phase separation in a binary mixture by (a) experiment and (b) numerical tests. Adapted from Voit et al. [13] with the permission
of American Physical Society.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Formation of block copolymer by numerical (first row) and numerical (second row) tests. Adapted fromHorvat et al. [21] with the
permission of American Chemical Society.

with the periodic boundary condition 𝜙(0, 𝑡) = 𝜙(1, 𝑡). The
phase-field 𝜙(𝑥, 𝑡) is the difference between the concentra-
tions of the two mixtures’ components, 𝐹(𝜙) = 0.25(𝜙2 − 1)2,
and 𝜖 is a positive constant. The AC equation has a wide
range of applications such as mean curvature flows [24–26],
two-phase incompressible fluids [27], complex dynamics of
dendritic growth [28, 29], image inpainting [30], and image
segmentation [31, 32].

The third equation is the CH equation [33] onΩ = (0, 1):
𝜕𝜙𝜕𝑡 (𝑥, 𝑡) = Δ𝜇 (𝑥, 𝑡) for 𝑡 > 0, (3)

𝜇 (𝑥, 𝑡) = 𝐹󸀠 (𝜙 (𝑥, 𝑡)) − 𝜖2Δ𝜙 (𝑥, 𝑡) , (4)

with the periodic boundary condition

𝜙 (0, 𝑡) = 𝜙 (1, 𝑡) ,
𝜇 (0, 𝑡) = 𝜇 (1, 𝑡) . (5)

This CH equation is widely used in applications such as
phase separation [34], topology optimization [35], multi-
phase incompressible fluid flows [36–39], image inpainting
[40], surface reconstruction [41], diblock copolymer [42],
tumor growth simulation [43], and microstructures with
elastic inhomogeneity [44].

Some studies suggest a mathematical model as a way to
reproduce the experiment and present a numerical solution
of it, as shown in Figures 1 and 2. Figure 1 shows the
experimental and numerical pattern formations of binary
mixture [13].

Other example [21] is the formation of block copolymer;
the numerical and experimental results are shown in first and
second rows in Figure 2, respectively.

Along with the study of mathematical model, various
numerical schemes have been developed as a way to solve this
accurately. At this time, a convergence test can be performed
as a method for verifying the accuracy of such a numerical
solution, which must be performed correctly.
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Therefore, we present the right method validating the
accuracy order of the numerical solution for parabolic-type
equations with various benchmark tests.

This paper is structured in the following manner. In
Section 2, we describe the numerical solution algorithms
for the three equations. In Section 3, we present several
numerical results. Then, in Section 4, we conclude.

2. Numerical Solution

In this section, we present the numerical solutions for the
three equations by a finite difference method [45].

2.1. Heat Equation. First, we consider the heat equation. LetΩ = (0, 2𝜋) be discretized by using a uniform grid with ℎ =2𝜋/𝑁𝑥, where𝑁𝑥 is the number of subintervals (see Figure 3).
Let 𝜙𝑛𝑖 be approximation of 𝜙(𝑥𝑖, 𝑡𝑛), where 𝑥𝑖 = (𝑖−0.5)ℎ,𝑡𝑛 = 𝑛Δ𝑡, and Δ𝑡 is the temporal step size. Now, we apply a 𝜃-

method to the heat (1) as follows:

𝜙𝑛+1𝑖 − 𝜙𝑛𝑖Δ𝑡 = (1 − 𝜃) Δ ℎ𝜙𝑛𝑖 + 𝜃Δ ℎ𝜙𝑛+1𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑁𝑥,

(6)

where Δ ℎ𝜙𝑛𝑖 = (𝜙𝑛𝑖−1 − 2𝜙𝑛𝑖 + 𝜙𝑛𝑖+1)/ℎ2 and 0 ≤ 𝜃 ≤ 1.
For the homogeneous Neumann boundary condition, we set𝜙𝑛0 = 𝜙𝑛1 and 𝜙𝑛𝑁

𝑥
+1 = 𝜙𝑛𝑁

𝑥

for all 𝑛 = 0, 1, . . .. If 𝜃 = 0.5, then
(6) becomes the Crank–Nicolson (CN) scheme [46] and the
convergence rate is𝑂(Δ𝑡2)+𝑂(ℎ2). If 𝜃 = 1, then (6) becomes
a fully implicit scheme with the convergence rate, 𝑂(Δ𝑡) +𝑂(ℎ2). Here, (6) is solved by using theThomas algorithm [45].
Let the error be defined as e𝑁𝑡𝑁

𝑥

= (𝑒𝑁𝑡1 , 𝑒𝑁𝑡2 , . . . , 𝑒𝑁𝑡𝑁
𝑥

), where
𝑒𝑁𝑡𝑖 = 𝜙𝑁𝑡𝑖 − 𝜙(𝑥𝑖, 𝑡𝑁

𝑡

) for 𝑖 = 1, . . . , 𝑁𝑥 and let ‖e𝑁𝑡𝑁
𝑥

‖2 =
√(1/𝑁𝑥) ∑𝑁𝑥𝑖=1(𝑒𝑁𝑡𝑖 )2.
2.2. AC Equation. We consider the numerical solution for the
AC equation. Let 𝜙𝑛𝑖 be approximation of 𝜙(𝑥𝑖, 𝑡𝑛), where 𝑥𝑖 =𝑖ℎ and ℎ = 1/𝑁𝑥. We discretize (2) by applying the 𝜃-method
as follows:

𝜙𝑛+1𝑖 − 𝜙𝑛𝑖Δ𝑡 = (1 − 𝜃) (−𝐹󸀠 (𝜙𝑛𝑖 )𝜖2 + Δ ℎ𝜙𝑛𝑖 )

+ 𝜃(−𝐹󸀠 (𝜙𝑛+1𝑖 )
𝜖2 + Δ ℎ𝜙𝑛+1𝑖 ) ,

(7)

where 0 ≤ 𝜃 ≤ 1 and 0 ≤ 𝑖 ≤ 𝑁𝑥. For the periodic boundary
condition, we set 𝜙𝑛0 = 𝜙𝑛𝑁

𝑥

for all 𝑛 = 0, 1, . . .. Here, we use a
multigrid algorithm [47–49] to solve the discrete (7).

2.3. CHEquation. In this problem,we apply the uncondition-
ally gradient stable method [50] to (3) and (4):

𝜙𝑛+1𝑖 − 𝜙𝑛𝑖Δ𝑡 = Δ ℎ𝜇𝑛+1𝑖 , for 0 ≤ 𝑖 ≤ 𝑁𝑥, (8)

𝜇𝑛+1𝑖 = (𝜙𝑛+1𝑖 )3 − 𝜙𝑛𝑖 − 𝜖2Δ𝜙𝑛+1𝑖 (9)
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h

Figure 3: Uniform grid with a spatial step size ℎ.

with the periodic boundary condition. Note that this scheme
is first-order in time and second-order in space. To solve
the discrete equation (8) and (9), we also use a multigrid
algorithm [47–49].

3. Numerical Experiments

3.1. Heat Equation. For numercial test, the initial state is
given by 𝜙(𝑥, 0) = cos(𝑥) on Ω = (0, 2𝜋). Therefore, the
closed-form solution of (1) is 𝜙(𝑥, 𝑡) = 𝑒−𝑡 cos(𝑥). Now, we
compute the discrete 𝑙2-norm error at 𝑇 = 0.1.
3.1.1. Convergence Test for the CN Scheme. Table 1 lists the𝑙2-norm error and temporal convergence rates for the CN
scheme with various Δ𝑡 = 𝑇/𝑁𝑡 and the fixed space step sizeℎ = 2𝜋/𝑁𝑥. Here, the temporal convergence rate is defined as
log2(‖e𝑁𝑡𝑁

𝑥

‖2/‖e2𝑁𝑡𝑁
𝑥

‖2).Theboxed rates are the numbers greater
than or equal to 1.9. As we refine the space grid size, we have
more second-order temporal convergence results.

Table 2 lists the 𝑙2-norm error and spatial convergence
rates for the CN scheme with various ℎ = 2𝜋/𝑁𝑥 and the
fixed time step size Δ𝑡 = 𝑇/𝑁𝑡. The spatial convergence rate
is defined as log2(‖e𝑁𝑡𝑁

𝑥

‖2/‖e𝑁𝑡2𝑁
𝑥

‖2). As we refine the time grid
size, we have more second-order spatial convergence results.

Table 3 lists the 𝑙2-norm error and convergence rates for
the CN scheme with various ℎ = 2𝜋/𝑁𝑥 and Δ𝑡 = 𝑇/𝑁𝑡.
The convergence rate is defined as log2(‖e𝑁𝑡𝑁

𝑥

‖2/‖e2𝑁𝑡2𝑁
𝑥

‖2).We
have second-order convergence results for all the cases. We
have a sequence of the second-order convergence (diagonal
sequence in Table 3) regardless of starting pair, (𝑁𝑥, 𝑁𝑡).
We can find some examples of this approach. In [1], the
refinement path was taken to be Δ𝑡 = 0.2ℎ/√2 to show
the second-order convergence of the proposed numerical
scheme for the Cahn–Hilliard–Navier–Stokes equation. In
[2], Δ𝑡 = ℎ was taken to show the second-order convergence
for solving space fractional diffusion equations. In [3],Δ𝑡 = ℎ
was used to show the second-order convergence rate for a
two-sided space-fractional diffusion equation with variable
coefficients.

We have the following relation between errors:

log2

󵄩󵄩󵄩󵄩󵄩e𝑁𝑡𝑁𝑥󵄩󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩󵄩e2𝑁𝑡2𝑁𝑥󵄩󵄩󵄩󵄩󵄩2 = log2

󵄩󵄩󵄩󵄩󵄩e𝑁𝑡𝑁𝑥󵄩󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩󵄩e2𝑁𝑡𝑁𝑥 󵄩󵄩󵄩󵄩󵄩2 + log2

󵄩󵄩󵄩󵄩󵄩e2𝑁𝑡𝑁𝑥 󵄩󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩󵄩e2𝑁𝑡2𝑁𝑥󵄩󵄩󵄩󵄩󵄩2
= log2

󵄩󵄩󵄩󵄩󵄩e𝑁𝑡𝑁𝑥󵄩󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩󵄩e𝑁𝑡2𝑁𝑥󵄩󵄩󵄩󵄩󵄩2 + log2

󵄩󵄩󵄩󵄩󵄩e𝑁𝑡2𝑁𝑥󵄩󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩󵄩e2𝑁𝑡2𝑁𝑥󵄩󵄩󵄩󵄩󵄩2 .
(10)
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Table 1: 𝑙2-norm error and temporal convergence rates for the CN scheme with various Δ𝑡 at 𝑇 = 0.1.
𝑁𝑡 \ 𝑁𝑥 100 200 400 800 1600
1 3.23e-5 4.81e-5 5.21e-5 5.31e-5 5.33e-5
rate 2.06 2.58 2.12 2.03 2.01
2 7.73e-6 8.07e-6 1.20e-5 1.30e-5 1.33e-5
rate -1.20 2.06 2.57 2.11 2.03
4 1.77e-5 1.93e-6 2.02e-6 3.00e-6 3.25e-6
rate -0.19 -1.20 2.06 2.57 2.11
8 2.02e-5 4.43e-6 4.82e-7 5.04e-7 7.51e-7
rate -0.04 -0.19 -1.20 2.06 2.57
16 2.08e-5 5.05e-6 1.11e-6 1.21e-7 1.26e-7
rate -0.01 -0.04 -0.19 -1.20 2.06
32 2.10e-5 5.21e-6 1.26e-6 2.77e-7 3.02e-8
rate -0.00 -0.01 -0.04 -0.19 -1.20
64 2.10e-5 5.25e-6 1.30e-6 3.16e-7 6.92e-8
rate -0.00 -0.00 -0.01 -0.04 -0.19
128 2.10e-5 5.26e-6 1.31e-6 3.26e-7 7.90e-8
rate -0.00 -0.00 -0.00 -0.01 -0.04
256 2.10e-5 5.26e-6 1.31e-6 3.28e-7 8.14e-8
rate -0.00 -0.00 -0.00 -0.00 -0.01
512 2.10e-5 5.26e-6 1.32e-6 3.29e-7 8.20e-8

Table 2: 𝑙2-norm error and spatial convergence rates for the CN scheme with various ℎ at 𝑇 = 0.1.
𝑁𝑡 \ 𝑁𝑥 100 rate 200 rate 400 rate 800 rate 1600
1 3.23e-5 -0.58 4.81e-5 -0.11 5.21e-5 -0.03 5.31e-5 -0.01 5.33e-5
2 7.73e-6 -0.06 8.07e-6 -0.57 1.20e-5 -0.11 1.30e-5 -0.03 1.33e-5
4 1.77e-5 3.20 1.93e-6 -0.06 2.02e-6 -0.57 3.00e-6 -0.11 3.25e-6
8 2.02e-5 2.19 4.43e-6 3.20 4.82e-7 -0.06 5.04e-7 -0.57 7.51e-7
16 2.08e-5 2.04 5.05e-6 2.19 1.11e-6 3.20 1.21e-7 -0.06 1.26e-7
32 2.10e-5 2.01 5.21e-6 2.04 1.26e-6 2.19 2.77e-7 3.20 3.02e-8
64 2.10e-5 2.00 5.25e-6 2.01 1.30e-6 2.04 3.16e-7 2.19 6.92e-8
128 2.10e-5 2.00 5.26e-6 2.00 1.31e-6 2.01 3.26e-7 2.04 7.90e-8
256 2.10e-5 2.00 5.26e-6 2.00 1.31e-6 2.00 3.28e-7 2.01 8.14e-8
512 2.10e-5 2.00 5.26e-6 2.00 1.32e-6 2.00 3.29e-7 2.00 8.20e-8

From the convergence results in Tables 1, 2, and 3, we can
confirm this relation. This convergence relation implies that
if we refine both the time and space steps, then we may have
the second-order convergence even though one of two con-
vergence rates is not second-order accurate. Interestingly, the
convergence relation implies that we do not have the second-
order convergence results for both the spatial and temporal
convergence rates at the same starting pair, (𝑁𝑥, 𝑁𝑡).
3.1.2. Convergence Test for the Fully Implicit Scheme. Table 4
lists the 𝑙2-norm error and temporal convergence rates for the
fully implicit scheme with various Δ𝑡 = 𝑇/𝑁𝑡 and the fixed
space step size ℎ = 2𝜋/𝑁𝑥. As we refine the space grid size,
we have more first-order temporal convergence results.

Table 5 lists the 𝑙2-norm error and spatial convergence
rates for the fully implicit scheme with various ℎ = 2𝜋/𝑁𝑥
and the fixed time step size Δ𝑡 = 𝑇/𝑁𝑡. As we refine the time

step size, we have more second-order spatial convergence
results.

Table 6 lists the 𝑙2-norm error and convergence rates
for the fully implicit scheme with various ℎ = 2𝜋/𝑁𝑥
and Δ𝑡 = 𝑇/𝑁𝑡. We have a range of convergence results
from the first-order to the second-order accuracy. In the
lower left triangular region in Table 6, the magnitude of the
spatial discretization error dominates that of the temporal
discretization error. Therefore, we have the second-order
convergence. In the upper right triangular region in Table 6,
themagnitude of the temporal discretization error dominates
that of the spatial discretization error. Therefore, we have the
first-order convergence. This result implies that if we refine
both the time and space steps, then we may have the second-
order convergence even though the fully implicit scheme is
first-order accurate in temporal discretization.
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Table 3: 𝑙2-norm error and convergence rates for the CN scheme with various Δ𝑡 and ℎ.
𝑁𝑡 \ 𝑁𝑥 100 rate 200 rate 400 rate 800 rate 1600
1 3.23e-5 4.81e-5 5.21e-5 5.31e-5 5.33e-5
rate 2.00 2.00 2.00 2.00
2 7.73e-6 8.07e-6 1.20e-5 1.30e-5 1.33e-5
rate 2.00 2.00 2.00 2.00
4 1.77e-5 1.93e-6 2.02e-6 3.00e-6 3.25e-6
rate 2.00 2.00 2.00 2.00
8 2.02e-5 4.43e-6 4.82e-7 5.04e-7 7.51e-7
rate 2.00 2.00 2.00 2.00
16 2.08e-5 5.05e-6 1.11e-6 1.21e-7 1.26e-7
rate 2.00 2.00 2.00 2.00
32 2.10e-5 5.21e-6 1.26e-6 2.77e-7 3.02e-8
rate 2.00 2.00 2.00 2.00
64 2.10e-5 5.25e-6 1.30e-6 3.16e-7 6.92e-8
rate 2.00 2.00 2.00 2.00
128 2.10e-5 5.26e-6 1.31e-6 3.26e-7 7.90e-8
rate 2.00 2.00 2.00 2.00
256 2.10e-5 5.26e-6 1.31e-6 3.28e-7 8.14e-8
rate 2.00 2.00 2.00 2.00
512 2.10e-5 5.26e-6 1.32e-6 3.29e-7 8.20e-8

Table 4: 𝑙2-norm error and temporal convergence rates for the fully implicit scheme with various Δ𝑡.
𝑁𝑡 \ 𝑁𝑥 100 200 400 800 1600
512 2.73e-5 1.15e-5 7.56e-6 6.58e-6 6.33e-6
rate 0.18 0.46 0.77 0.93 0.98
1024 2.42e-5 8.39e-6 4.44e-6 3.45e-6 3.21e-6
rate 0.10 0.30 0.63 0.87 0.96
2048 2.26e-5 6.82e-6 2.88e-6 1.89e-6 1.64e-6
rate 0.05 0.18 0.46 0.77 0.93
4096 2.18e-5 6.04e-6 2.10e-6 1.11e-6 8.63e-7
rate 0.03 0.10 0.30 0.63 0.87
8192 2.14e-5 5.65e-6 1.71e-6 7.19e-7 4.73e-7
rate 0.01 0.05 0.18 0.46 0.77
16384 2.12e-5 5.46e-6 1.51e-6 5.24e-7 2.77e-7
rate 0.01 0.03 0.10 0.30 0.63
32768 2.11e-5 5.36e-6 1.41e-6 4.27e-7 1.80e-7
rate 0.00 0.01 0.05 0.18 0.46
65536 2.11e-5 5.31e-6 1.36e-6 3.78e-7 1.31e-7
rate 0.00 0.01 0.03 0.10 0.30
131072 2.11e-5 5.29e-6 1.34e-6 3.53e-7 1.07e-7
rate 0.00 0.00 0.01 0.05 0.18
262144 2.11e-5 5.27e-6 1.33e-6 3.41e-7 9.44e-8

3.2.TheAllen–Cahn Equation. The initial condition is 𝜙(𝑥) =0.2 cos(2𝜋𝑥) onΩ = (0, 1). We use𝑇 = 1.0e-5, and 𝜖 = 0.0075.
Because there is no analytic solution for (7), we consider a
reference solution. We define the reference solution 𝜙𝑟𝑒𝑓 as
the numerical solution with very fine space and time steps,
(Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (3.81e-12, 1/2048).

3.2.1. Convergence Test for the CN Scheme. Table 7 lists the𝑙2-norm error and temporal convergence rates for the CN
scheme with various Δ𝑡 = 𝑇/𝑁𝑡 with a fixed space step
size ℎ = 1/2048. As we refine the time step size, i.e., 𝑁𝑡 =80, 160, 320, and 640, we have the second-order temporal
convergence result.
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Table 5: 𝑙2-norm error and spatial convergence rates for the fully implicit scheme with various ℎ.
𝑁𝑡 \ 𝑁𝑥 100 rate 200 rate 400 rate 800 rate 1600
512 2.73e-5 1.25 1.15e-5 0.61 7.56e-6 0.20 6.58e-6 0.06 6.33e-6
1024 2.42e-5 1.53 8.39e-6 0.92 4.44e-6 0.36 3.45e-6 0.11 3.21e-6
2048 2.26e-5 1.73 6.82e-6 1.25 2.88e-6 0.61 1.89e-6 0.20 1.64e-6
4096 2.18e-5 1.85 6.04e-6 1.53 2.10e-6 0.92 1.11e-6 0.36 8.63e-7
8192 2.14e-5 1.92 5.65e-6 1.73 1.71e-6 1.25 7.19e-7 0.61 4.73e-7
16384 2.12e-5 1.96 5.46e-6 1.85 1.51e-6 1.53 5.24e-7 0.92 2.77e-7
32768 2.11e-5 1.98 5.36e-6 1.92 1.41e-6 1.73 4.27e-7 1.25 1.80e-7
65536 2.11e-5 1.99 5.31e-6 1.96 1.36e-6 1.85 3.78e-7 1.53 1.31e-7
131072 2.11e-5 1.99 5.29e-6 1.98 1.34e-6 1.92 3.53e-7 1.73 1.07e-7
262144 2.11e-5 2.00 5.27e-6 1.99 1.33e-6 1.96 3.41e-7 1.85 9.44e-8

Table 6: 𝑙2-norm error and convergence rates for the fully implicit scheme with various Δ𝑡 and ℎ.
𝑁𝑡\𝑁𝑥 100 rate 200 rate 400 rate 800 rate 1600
512 2.73e-5 1.15e-5 7.56e-6 6.58e-6 6.33e-6
rate 1.70 1.37 1.13 1.04
1024 2.42e-5 8.39e-6 4.44e-6 3.45e-6 3.21e-6
rate 1.82 1.54 1.23 1.07
2048 2.26e-5 6.82e-6 2.88e-6 1.89e-6 1.64e-6
rate 1.90 1.70 1.37 1.13
4096 2.18e-5 6.04e-6 2.10e-6 1.11e-6 8.63e-7
rate 1.95 1.82 1.54 1.23
8192 2.14e-5 5.65e-6 1.71e-6 7.19e-7 4.73e-7
rate 1.97 1.90 1.70 1.37
16384 2.12e-5 5.46e-6 1.51e-6 5.24e-7 2.77e-7
rate 1.99 1.95 1.82 1.54
32768 2.11e-5 5.36e-6 1.41e-6 4.27e-7 1.80e-7
rate 1.99 1.97 1.90 1.70
65536 2.11e-5 5.31e-6 1.36e-6 3.78e-7 1.31e-7
rate 2.00 1.99 1.95 1.82
131072 2.11e-5 5.29e-6 1.34e-6 3.53e-7 1.07e-7
rate 2.00 1.99 1.97 1.90
262144 2.11e-5 5.27e-6 1.33e-6 3.41e-7 9.44e-8

Table 7: 𝑙2-norm error and temporal convergence rates for the CN scheme with various Δ𝑡. (Δ𝑡, ℎ)=(1.25e-7, 1/2048) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) =
(3.81e-12, 1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ) rate (Δ𝑡/4, ℎ) rate (Δ𝑡/8, ℎ)
𝑙2-error 7.13e-9 2.00 1.78e-9 2.00 4.46e-10 2.00 1.11e-10

Table 8: 𝑙2-norm error and spatial convergence rates for the CN scheme with various ℎ. (Δ𝑡, ℎ)=(3.81e-12, 1/8) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (3.81e-12,
1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡, ℎ/2) rate (Δ𝑡, ℎ/4) rate (Δ𝑡, ℎ/8)
𝑙2-error 3.45e-6 2.00 8.61e-7 2.01 2.14e-7 2.01 5.32e-8

Table 8 lists the 𝑙2-norm error and spatial convergence
rates for the CN scheme with various ℎ = 1/𝑁𝑥 with a fixed
time step size Δ𝑡 = 𝑇/2621440. As we refine the space grid
size, i.e., 𝑁𝑥 = 8, 16, 32 and 64, we have the second-order
spatial convergence result.

Tables 9 and 10 list the 𝑙2-norm error and spatial and
temporal convergence rates for the CN scheme with variousℎ = 1/𝑁𝑥 and Δ𝑡 = 𝑇/𝑁𝑡. The results generate the second-
order convergence for both the cases, i.e., (Δ𝑡, ℎ)=(1.25e-7,
1/64) and (Δ𝑡, ℎ)=(6.10e-11, 1/8).
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Table 9: 𝑙2-norm error and convergence rates for the CN scheme with various ℎ and Δ𝑡. (Δ𝑡, ℎ)=(1.25e-7, 1/64) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (3.81e-12,
1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ/2) rate (Δ𝑡/4, ℎ/4) rate (Δ𝑡/8, ℎ/8)
𝑙2-error 6.03e-8 2.01 1.50e-8 2.02 3.69e-9 2.09 8.68e-10

Table 10: 𝑙2-norm error and convergence rates for the CN scheme with various ℎ and Δ𝑡. (Δ𝑡, ℎ)=(6.10e-11, 1/8) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (3.81e-12,
1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ/2) rate (Δ𝑡/4, ℎ/4) rate (Δ𝑡/8, ℎ/8)
𝑙2-error 3.45e-6 2.00 8.61e-7 2.01 2.14e-7 2.01 5.32e-8

Table 11: 𝑙2-norm error and temporal convergence rates for the fully implicit scheme with various Δ𝑡. (Δ𝑡, ℎ)=(1.25e-07, 1/2048) and (Δ𝑡𝑟𝑒𝑓,ℎ𝑟𝑒𝑓) = (3.81e-12, 1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ) rate (Δ𝑡/4, ℎ) rate (Δ𝑡/8, ℎ)
𝑙2-error 2.82e-5 1.01 1.40e-5 1.01 6.96e-6 1.02 3.42e-6

Table 12: 𝑙2-norm error and spatial convergence rates for the fully implicit scheme with various ℎ. (Δ𝑡, ℎ)=(3.81e-12, 1/8) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) =
(3.81e-12, 1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡, ℎ/2) rate (Δ𝑡, ℎ/4) rate (Δ𝑡, ℎ/8)
𝑙2-error 3.46e-6 1.99 8.69e-7 1.97 2.22e-7 1.86 6.10e-8

Table 13: 𝑙2-norm error and convergence rates for the fully implicit scheme with various Δ𝑡 and ℎ. (Δ𝑡, ℎ)=(1.25e-7, 1/64) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) =
(3.81e-12, 1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ/2) rate (Δ𝑡/4, ℎ/4) rate (Δ𝑡/8, ℎ/8)
𝑙2-error 2.85e-5 1.01 1.42e-5 1.00 7.08e-6 1.00 3.54e-6

Table 14: 𝑙2-norm error and convergence rates for the fully implicit scheme with various Δ𝑡 and ℎ. (Δ𝑡, ℎ)=(6.10e-11, 1/8) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) =
(3.81e-12, 1/2048) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ/2) rate (Δ𝑡/4, ℎ/4) rate (Δ𝑡/8, ℎ/8)
𝑙2-error 3.47e-6 2.00 8.67e-7 2.00 2.17e-7 2.00 5.41e-8

3.2.2. Convergence Test for the Fully Implicit Scheme. Table 11
lists the 𝑙2-norm error and temporal convergence rates for the
fully implicit scheme with various Δ𝑡 = 𝑇/𝑁𝑡 and a fixed
space step size ℎ = 1/2048. As we refine the time step size, i.e.,𝑁𝑡 = 80, 160, 320, and 640, we have the first-order temporal
convergence result.

Table 12 lists the 𝑙2-norm error and spatial convergence
rates for the fully implicit scheme with various ℎ = 1/2048
with a fixed time step size Δ𝑡 = 𝑇/𝑁𝑡. As we refine the space
grid size, i.e.,𝑁𝑥 = 8, 16, 32, and 64, we have the second-order
spatial convergence result.

Tables 13 and 14 list the 𝑙2-norm error and spatial and
temporal convergence rates for the fully implicit scheme with
various ℎ = 1/𝑁𝑥 and Δ𝑡 = 𝑇/𝑁𝑡, respectively.

Table 13 shows that the convergence rate appears to be
only first-order with 𝑁𝑡 = 80 and 𝑁𝑥 = 64. On the other
hand, Table 14 shows that the convergence rate appears to
be second-order with 𝑁𝑡 = 163840 and 𝑁𝑥 = 8. These
results demonstrate that even if the numerical scheme is

only first-order in time and second-order in space, we may
have the second-order convergence with some refinement
combination.

3.3. The Cahn–Hilliard Equation. The initial condition is𝜙(𝑥) = 0.1 cos(2𝜋𝑥) on Ω = (0, 1). Table 15 lists the 𝑙2-norm
error and temporal convergence rates for the unconditionally
stable scheme with various Δ𝑡 = 𝑇/𝑁𝑡 with a fixed space
step size ℎ = 1/𝑁𝑥. We use 𝑁𝑥 = 1024, 𝑇 = 2.40e-3, and𝜖 = 0.02. We define the reference solution with fine time stepΔ𝑡 = 9.54e-6. We find that the convergence rates are all first-
order.

Table 16 lists the 𝑙2-norm error and spatial convergence
rates with various ℎ = 1/𝑁𝑥 with a fixed time step size Δ𝑡 =𝑇/𝑁𝑡. We use Δ𝑡 = 9.54e-6, 𝑇 = 2.40e-3, and 𝜖 = 0.02. We
define the reference solution with fine space step ℎ = 1/1024.
We can find that the convergence rates are second-order.

Table 17 lists the 𝑙2-norm error and spatial and temporal
convergence rates with various ℎ = 1/𝑁𝑥 and Δ𝑡. We use 𝑇 =
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Table 15: 𝑙2-norm error and temporal convergence rates for the unconditionally stable numerical scheme with various Δ𝑡. (Δ𝑡, ℎ)=(3.05e-4,
1/1024) and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (9.54e-6, 1/1024) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ) rate (Δ𝑡/4, ℎ)
l2-error 4.71e-5 1.05 2.27e-5 1.11 1.05e-5

Table 16: 𝑙2-norm error and spatial convergence rates for the unconditionally stable numerical scheme with various ℎ. (Δ𝑡, ℎ)=(9.54e-6, 1/16)
and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (9.54e-6, 1/1024) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡, ℎ/2) rate (Δ𝑡, ℎ/4)
𝑙2-error 9.90e-5 1.98 2.52e-5 1.96 6.46e-6

Table 17: 𝑙2-norm error and convergence rates for the unconditionally stable numerical scheme with various Δ𝑡 and ℎ. (Δ𝑡, ℎ)=(1.20e-3, 1/32)
and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (9.54e-6, 1/1024) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ/2) rate (Δ𝑡/4, ℎ/4)
𝑙2-error 2.06e-4 1.06 9.87e-5 1.00 4.93e-5

Table 18: 𝑙2-norm error and convergence rates for the unconditionally stable numerical scheme with various Δ𝑡 and ℎ. (Δ𝑡, ℎ)=(7.63e-5, 1/8)
and (Δ𝑡𝑟𝑒𝑓, ℎ𝑟𝑒𝑓) = (9.54e-6, 1/1024) are used.

case (Δ𝑡, ℎ) rate (Δ𝑡/2, ℎ/2) rate (Δ𝑡/4, ℎ/4)
𝑙2-error 3.88e-4 1.91 1.03e-4 1.95 2.67e-5

2.40e-3 and 𝜖 = 0.02. We can find that the convergence rates
are first-order.

Table 18 lists the 𝑙2-norm error and spatial and temporal
convergence rates with various ℎ = 1/𝑁𝑥 and Δ𝑡. We use 𝑇 =
2.40e-3 and 𝜖 = 0.02. We can find that the convergence rates
are second-order.

The results in Tables 17 and 18 show that we may have the
first-order or the second-order convergence rates depending
on starting spatial and temporal step sizes in the case of the
first-order in time and the second-order in space scheme.

4. Conclusion

We presented verification methods for the convergence
rates of the numerical solutions for parabolic equations. As
examples, we considered the numerical convergence rates of
the heat equation, the AC equation, and the CH equation.
Convergence test results showed that if we refine the spatial
and temporal steps at the same time, then we may have
the second-order convergence rate for the fully implicit
scheme, which is first-order accurate in time and second-
order accurate in space. Therefore, for a rigorous numerical
convergence test, we need to perform the spatial and the
temporal convergence tests separately.
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