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ABSTRACT. We present the three-dimensional volume reconstruction model using the modi-
fied Cahn–Hilliard equation with a fractional Laplacian. From two-dimensional cross section
images such as computed tomography, magnetic resonance imaging slice data, we suggest an
algorithm to reconstruct three-dimensional volume surface. By using Laplacian operator with
the fractional one, the dynamics is changed to the macroscopic limit of Levy process. We
initialize between the two cross section with linear interpolation and then smooth and recon-
struct the surface by solving modified Cahn–Hilliard equation. We perform various numerical
experiments to compare with the previous research.

1. INTRODUCTION

Three-dimensional volume reconstruction has been various studied by using two-dimensional
slice data such as computed tomography (CT) and magnetic resonance imaging (MRI). Us-
ing CT data, Vannier et al. implement complex craniofacial abnormalities reconstruction [1].
Koltai and Wood undertook a study of reconstruction from CT data, emphasizing the impor-
tance of three-dimensional reconstruction for accurate diagnosis in 1986 [2]. Marentette and
Maise developed the list of conditions for which three-dimensional CT reconstruction such
as acute complex trauma, posttumor reconstruction, delayed trauma reconstruction, and early
trauma reconstruction [3]. Until recently, there have been various studies of 3D reconstruction
using CT data: using dictionary learning [4], iterative reconstruction algorithm [5, 6], statistical
analysis [7].
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Also there are various researches by using MRI data: brain tumor reconstruction from MRI
with morphological operators and bicubic interpolation [8]. Gholipour et al. studied segmenta-
tion and volumetric reconstruction of fetal brain [9]. Yang et al. reconstruct mouse brain from
histological sections with the guidance of MRI [10] and Lloyd et al. visualize the 3D fetal heart
using prenatal MRI [11].

In particular, there was a previous study by Lee et al. [12], that research is three-dimensional
volume reconstruction by using the modified Cahn–Hilliard (CH) equation from two planar
cross sections. The difference between the work [12] and this paper is using the fractional
CH equation to volume reconstruction. In recent years, the fractional CH equation has been
studied [13, 14] and the image processing such as segmentation and inpaining is one of the
most popular applications [15, 16].

In this paper, we show a effect of fractional CH equation to reconstruct the shapes from
two parallel planes. A various simulations are conducted to compare the differences with the
original CH equation.

We organize this paper as follow: in Section 2, we describe the reconstruction process from
two parallel planes. In Section 3, explain a numerical solution and various simulation results
are shown in Section 4. Finally, the conclusion is drawn in Section 5.

2. RECONSTRUCTION PROCESS

We use the following the CH equation with a fractional Laplacian for three-dimensional
volume reconstruction:

∂ϕ(x, t)

∂t
= ∆

(
F ′(ϕ(x, t)) + ϵ2 (−∆)s ϕ(x, t)

)
, x ∈ Ω, t > 0, (2.1)

where ϕ is the phase-field defined in [−1, 1], F (ϕ) = 0.25(1− ϕ4), ϵ is the coefficient related
with the interacial energy, and 0 < s ≤ 1 is a fractional order. A surface of a reconstructed
volume is represented by a zero-contour of ϕ. Note that the first Laplacian in the right hand
side is related with the solution space H−1 of the gradient flow for deriving the CH equation
from the Ginzburg–Landau free energy functional. Let ϕtop and ϕbottom be respectively the top
and bottom data on slices S1 and S2 (See Fig. 1).

FIGURE 1. Schematic of slice data.
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The initial condition is defined by the linear interpolation from ϕtop and ϕbottom as follows:

ϕ(x, y, θz1 + (1− θ)z2) = θϕtop(x, y) + (1− θ)ϕbottom(x, y), 0 ≤ θ ≤ 1,

where z1 and z2 are the z-coordinate of the S1 and S2, respectively. Note that there is no
fidelity term as a conventional reconstruction method. The term is replaced by a Dirichlet type
boundary condition.

3. NUMERICAL SOLUTION

We consider the Fourier spectral method in space and the linear convex splitting scheme in
time [17]. The temporal discretization of (2.1) is firstly consider as follows:

ϕn+1 − ϕn

∆t
= ∆

(
(ϕn)3 − 3ϕn + 2ϕn+1 + ϵ2(−∆)sϕn+1

)
. (3.1)

For spatial discretization, we refer the spectral/Fourier definition of the fractional Laplacian
[18]:

F ((−∆)sϕ) (ξ) = |ξ|2sF(ϕ)(ξ), (3.2)

where F(·) is a Fourier transformation with symbol |ξ|2s. Since the drawback of this definition
is valid only for a unbounded domain or a periodic boundary condition, we need to consider an
additional strategy for a boundary condition, which will be discussed in later.

Applying the Fourier transform to (3.1) and using (3.2), the following discrete scheme can
be derived:

ϕ̂n+1
pqr − ϕ̂n

pqr

∆t
= −|ξpqr|2

((
ϕ̂n
pqr

)3
− 3ϕ̂n

pqr + 2ϕ̂n+1
pqr + ϵ2|ξpqr|2sϕ̂n+1

pqr

)
,

where ϕ̂n
pqr is the discrete Fourier coefficient, ξpqr = (2πp/Lx)

2s+(2πq/Ly)
2s+(2πr/Lx)

2s,
Lx, Ly, and Lz are respectively a length of a domain in x-, y-, and z-axis. The procedure stops
when ∥ϕn+1 − ϕn∥∞ − ∥ϕn − ϕn−1∥∞ is less than a tolerance 10−12. Instead of a fidelity
term, the weighted average is used for the values of the top and bottom slices. Let Nz1 and Nz2

be positive integers such that Nz1 = z1/h and Nz2 = z2/h. Then, the weighted average using
α is calculated as follows:

ϕn+1
ij,Nz1

= αϕ0
ij,Nz1

+ (1− α)
(
2ϕn+1

ij,Nz1−1 − ϕn+1
ij,Nz1−2

)
,

ϕn+1
ij,Nz2

= αϕ0
ij,Nz2

+ (1− α)
(
2ϕn+1

ij,Nz2+1 − ϕn+1
ij,Nz2+2

)
,

where α ∈ [0, 1]. To deal with a bounded domain, we set ϕn+1
ijk = ϕn+1

ij,Nz1
for k = Nz1 +

1, · · · , Nz and ϕn+1
ijk = ϕn+1

ij,Nz2
for k = 1, · · · , Nz2 − 1, i.e., there is dummy space to avoid the

periodic boundary condition between the boundary of the computational domain and the slice
data. Since the effect of α is already disscused in previous research [12], we use α = 0.5 as in
the research.
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4. NUMERICAL SIMULATIONS

We perform numerical simulations to compare results with fractional and standard CH equa-
tion. Unless otherwise specified, we use the number of spatial grids N = 64, the spatial step
size h = 1/64, the temporal step size ∆t = 0.1, and ϵ = 4h/2

√
2 tanh−1(0.9).

4.1. Effect on reconstruction by height. We first check the effect on the reconstruction by
height. Let Nh = Nz2 − Nz1 be the number of grid points depending on the reconstruction
height. Figure 2 shows the reconstruction isosurface for the following oblique cylinder with
different Nh:

ϕ0
top =

{
1,

√
(x− 0.6)2 + (y − 0.5)2 < 0.2

−1, otherwise,

ϕ0
botton =

{
1,

√
(x− 0.4)2 + (y − 0.5)2 < 0.2

−1, otherwise.

The reconstruction procedure fails in the case of Fig. 2 (b) since the height between slice data
is too far. Based on the result, we use Nh = 10 unless otherwise specified.

(a) Nh = 10 (b) Nh = 14

FIGURE 2. Reconstruction isosurface for oblique cylinder with different Nh.

4.2. Effect of fractional order s. To check the fractional order s, we consider the oblique
cylinder with the same initial condition in the previous simulation.

Figure 3 shows the reconstruction isosurface for a oblique cylinder with (a) s = 0.25, (b)
s = 0.5, and (c) s = 1, which is a standard case. As seen in Figure 3 (a), the case s = 0.25,
which is most small s, gives the artifical and awkward reconstruction result. Comparing with
Figure 3 (b) and (c), we can notice that the former case gives more smooth isosurface result.

We also consider the standard cylinder with the following initial condition:

ϕ0
top = ϕ0

botton =

{
1,

√
(x− 0.5)2 + (y − 0.5)2 < 0.2

−1, otherwise.
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(a) s = 0.25 (b) s = 0.5 (c) s = 1

FIGURE 3. Reconstruction isosurface for oblique cylinder with different s.

Figure 4 shows the another reconstruction isosurface for a standard cylinder with same s
valuse. Contrary to previous result, the case s = 0.25 gives the more reasonable reconsturction
result than others.

(a) s = 0.25 (b) s = 0.5 (c) s = 1

FIGURE 4. Reconstruction isosurface for standard cylinder with different s.

The topology of the reconstruction is important since there are exmaples that cannot be
processed when they violate the criterion by having intersection with a line perpendicular to
the slices [19]. We consider the two cylinders with the following initial condition:

ϕ0
top = ϕ0

botton =


1,

√
(x− 0.38)2 + (y − 0.38)2 < 0.15,

1,
√

(x− 0.62)2 + (y − 0.62)2 < 0.15,

−1, otherwise.

Figure 5 shows the reconstruction isosurface for two cylinders with different s. It is notable
that the fractional order cases could prevent from changing topology (or emerging) even if the
initial shape is quite close.

(a) s = 0.25 (b) s = 0.5 (c) s = 1

FIGURE 5. Reconstruction isosurface for two cylinders with different s.



208 Y. CHOI AND S. LEE

4.3. Various initial data. We perform the reconsturction simulation with the following vari-
ous initial data for top and bottom slice:

(a)

ϕ0
top =

{
1,

√
(x− 0.5)2 + 0.5(y − 0.5)2 < 0.2,

−1, otherwise,

ϕ0
botton =

{
1,

√
0.5(x− 0.5)2 + (y − 0.5)2 < 0.2,

−1, otherwise.

(b)

ϕ0
top =

{
1,

√
(x− 0.5)2 + (y − 0.5)2 < 0.2,

−1, otherwise,

ϕ0
botton =

{
1, (x, y) ∈ [0.2, 0.8]× [0.2, 0.8],

−1, otherwise.

(c)

ϕ0
top =


1,

√
(x− 0.3)2 + 0.5(y − 0.3)2 < 0.15,

1,
√

(x− 0.7)2 + 0.5(y − 0.7)2 < 0.15,

−1, otherwise,

ϕ0
botton =

{
1,

√
0.5(x− 0.5)2 + (y − 0.5)2 < 0.3,

−1, otherwise.

(d)

ϕ0
top =


1,

√
(x− 0.3)2 + 0.5(y − 0.5)2 < 0.12,

1,
√

(x− 0.7)2 + 0.5(y − 0.3)2 < 0.12,

1,
√

(x− 0.7)2 + 0.5(y − 0.7)2 < 0.12,

−1, otherwise,

ϕ0
botton =

{
1,

√
0.5(x− 0.5)2 + (y − 0.5)2 < 0.3,

−1, otherwise.

Figure 6 shows contour of S1 and S2 (left) and reconstruction isosurfaces from the respective
slice data (right). Each cases give different reconstruction results and it imply that the variable
s value in space may gives better results when considering the practical use of our proposed
algorithm such as multi-slice cross section.

5. CONCLUSIONS

We proposed the three-dimensional volume reconstruction model using the modified CH
equation with a fractional Laplacian. The fractional order was expected to change the dynamics
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(a) s = 0.25 (b) s = 0.5 (c) s = 1

FIGURE 6. Contour of S1 and S2 (left) and reconstruction isosurfaces from
respective slice data (right).

of the CH equation. We suggested a algorithm to reconstruct three-dimensional volume surface
by using Laplacian operator with the fractional one. We initialized between the two parallel
planes with linear interpolation and then smoothed and reconstructed the surface by solving
modified CH equation. We performed various numerical simulations and compared the effect
of fractional CH equation with original CH equation. It is observed that the reconstructed
results are depending on the fractional order. In the future work, variable-order fractional
Laplacian [20] would be discussed to more efficient reconstruction.
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