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In this study, we apply a finite difference scheme to solve the Cahn–Hilliard equation with generalized mobilities in complex
geometries. *is method is conservative and unconditionally gradient stable for all positive variable mobility functions and
complex geometries. Herein, we present some numerical experiments to demonstrate the performance of this method. In
particular, using the fact that variable mobility changes the growth rate of the phases, we employ space-dependent mobility to
design a cylindrical biomedical scaffold with controlled porosity and pore size.

1. Introduction

*e Cahn–Hilliard (CH) equation was derived for modeling
the phase separation of a binary alloy system [1, 2] and has
been utilized in applications in various fields [3]. *e CH
equation is

zc

zt
(x, t) � ∇ · (M(x)∇μ(x, t)), x ∈ Ω, t> 0, (1)

μ � F′(c(x, t)) − ϵ2Δc(x, t), (2)

where Ω is a domain, c is a mass concentration of a binary
mixture, M is a mobility function, F(c) � c2(c − 1)2/4 is a
free energy function, and ϵ is a positive constant. *e zero
Neumann or periodic boundary conditions are generally
applied to complete the system. *e reader can refer to [4]
for more details on the CH equation. Furthermore, the CH
equation has been widely researched in complex domains
and on surfaces with complex geometries and topologies
using meshfree methods [5] and isogeometric analysis [6, 7].

Many studies on the CH equation have assumed that the
mobility is constant; however, the equation was originally
formulated with degenerate mobility [1]. Numerical
methods and simulations with variable mobility can be easily

found (for example [8–11]). Kim [12] showed the effect of
space-dependent mobility (M(x, y) � 0.01 + 0.99y) on
phase separation through a numerical example, which is
shown in Figure 1.

Variable mobility changes the rate of phase separation
and the coarsening process.*is observation motivated us to
employ space-dependent mobility to the manufacturing of a
biomedical scaffold because many researchers have recently
demonstrated that adaptive porosity and pore size are im-
portant requirements for a scaffold [13, 14]. A general
scaffold has been constructed with a uniform pattern [15–
17]. However, various types of biomedical scaffolds have also
been proposed to provide reinforcing features [18, 19].

To numerically design a biomedical scaffold, we require
an algorithm that can deal with complex geometry. *us, we
consider a simple and efficient method that was proposed in
[20]. In this paper, we completely prove the energy stability
of the proposed method with variable mobility. Applying
space-dependent mobility, we have a concrete result for a
cylindrical scaffold with control of both porosity and pore
size.

*e remainder of this paper is organized as follows. In
Section 2, we describe our numerical method for the CH
equation with variable mobility in arbitrarily shaped
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domains. In Section 3, several numerical experiments are
reported. Finally, conclusions are presented in Section 4.

2. Numerical Methods

For simplicity, we describe the numerical algorithm in the
two-dimensional space, and then its three-dimensional
discretization is analogously defined. To solve the given
equations in the complex domain, we use the boundary
control function G introduced in [20], which we have de-
scribed below. *e summation by parts formula is shown
with the proposed inner products. Owing to this formula, we
can simply prove the mass conservation and the decreasing
of the energy functional.

2.1. Boundary Control Function. Given an arbitrary domain
Ωin and its boundary Γ � zΩin, we take a rectangular domain
Ω � (0, Lx) × (0, Ly) embedding Ωin. Let Ωout � Ω/Ωin be
outside of Ωin (see Figure 2(a)).

Let Δx � Lx/Nx and Δy � Ly/Ny be the space step sizes
with even integers Nx and Ny, respectively; we consider a
uniformmesh h � Δx � Δy. We define a set of cell centers as
Ωh � (xi, yj): 1≤ i≤Nx, 1≤ j≤Ny􏽮 􏽯, where xi � (i − 0.5)h

and yj � (j − 0.5)h. Let cn
ij and μn

ij be approximations of
c(xi, yj, tn) and μ(xi, yj, tn), respectively, where tn � nΔt
and Δt is a time step size. We define the inner and outer grid
domains as Ωh

in � Ωh ∩Ωin and Ωh
out � Ωh ∩Ωout, respec-

tively, see Figure 2(b). We denote Γh by the numerical in-
terface, which is a staggered line between Ωh

in and Ωh
out. At

the cell center, the boundary control function G is defined as

Gij �
1, if xij ∈ Ωh

in,

0, otherwise.

⎧⎨

⎩ (3)

At the edge, G is defined as Gi+(1/2),j � GijGi+1,j and
Gi,j+(1/2) � GijGi,j+1, see Figure 2(c). By defining the
boundary control function G, we can reuse the multigrid
algorithm which is natural to the rectangular domain.

Here, we consider a zero Neumann boundary condition
on the staggered boundary Γh:

ni+(1/2),j · ∇dci+(1/2),j � 0,

ni,j+(1/2) · ∇dci,j+(1/2) � 0,
(4)

where n is the outward normal vector at the cell edge. In this
paper, we focus on the method with guaranteed mass
conservation and energy stability. Because the value of G at
the boundary Γh is defined to be zero, G has the information
for the boundary condition. For example, if xi+(1/2),j or
xi,j+(1/2) is the edge point of the boundary, then

Gi+(1/2),j∇dci+(1/2),j � 0 orGi,j+(1/2)∇dci,j+(1/2) � 0. (5)

Figure 3 shows that Ωh
in, which is an approximation of

the circular disk domain Ωin, converges to Ωin as we refine
the mesh size.

We define the discrete differentiation of c as

Dxci+(1/2),j �
ci+1,j − cij

h
,

Dyci,j+(1/2) �
ci,j+1 − cij

h
.

(6)

*e discrete divergence operator is denoted as

y
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Figure 1: Temporal evolution (a, b) of morphologies during spinodal phase separation of a ternary system. Reprinted from [12] with
permission from Elsevier.
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∇d · M∇dc( 􏼁ij �
Mi+(1/2),j ci+1,j − cij􏼐 􏼑 − Mi− (1/2),j cij − ci− 1,j􏼐 􏼑

h2

+
Mi,j+(1/2) ci,j+1 − cij􏼐 􏼑 − Mi,j− (1/2) cij − ci,j− 1􏼐 􏼑

h2 .

(7)

Now, we present the fully discrete scheme for the
CH equation with variable mobility in a complex do-
main, which is based on the convex splitting method
[21]. A semi-implicit time and centered difference
space discretization of equations (1) and (2) are as
follows:

Ωout

Ωin

(a)

Ωh
out

Ωh
in

(b)

(c)

Figure 2: (a)Ωin is a target geometry, (b)Ωh
in is represented by the closed circles, and (c) boundary control function G is defined as G � 1 at

closed circles and G � 0 at open circles.

(a) (b) (c) (d)

Figure 3: Convergence ofΩh
in toΩin as we refine the mesh. Mesh sizes are shown below each figure. (a) 16×16, (b) 32× 32, (c) 64× 64, and

(d) 128×128.
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cn+1
ij − cn

ij

Δt
� ∇d · GM

n∇dμ
n+1

􏼐 􏼑ij,
(8)

μn+1
ij � Fc

′ c
n+1
ij􏼐 􏼑 − ϵ2∇d · G∇dc

n+1
􏼐 􏼑ij + Fc

′ c
n
ij􏼐 􏼑, (9)

where Fc(c) and Fe(c) are convex functions. *e boundary
conditions are included in the function G.

2.2. Inner Products and Mass Conservation. *e discrete l2
inner products are defined as

(ϕ,ψ)h � h
2
􏽘
i�1

Nx

􏽘
j�1

Ny

Gijϕijψij,

∇dϕ,∇dψ( 􏼁e � h
2

􏽘
i�0

Nx

􏽘
j�1

Ny

Gi+(1/2),jDxϕi+(1/2),jDxψi+(1/2),j
⎛⎝

+ 􏽘
i�1

Nx

􏽘
j�0

Ny

Gi,j+(1/2)Dyϕi,j+(1/2)Dyψi,j+(1/2)
⎞⎠.

(10)

Because of the way G is defined, we can represent the
summation as

􏽘

Nx

i�1
􏽘

Ny

j�1
Gij � 􏽘

Gij�1
. (11)

Furthermore, the summations in (·, ·)e can be rewritten
in a similar manner:

􏽘

Nx

i�0
􏽘

Ny

j�1
Gi+(1/2),j � 􏽘

Gi+(1/2),j�1
,

􏽘

Nx

i�1
􏽘

Ny

j�0
Gi,j+(1/2) � 􏽘

Gi,j+(1/2)�1
.

(12)

From the definitions of the inner products and the
boundary control function G, the summation by parts is
satisfied:

ϕ,∇d · G∇dψ( 􏼁( 􏼁h � − ∇dϕ,∇dψ( 􏼁e. (13)

*e detailed proof for the equality in equation (13) is as
follows:

ϕ,∇d · G∇dψ( 􏼁( 􏼁h � 􏽘
Gij�1

ϕij∇d · G∇dψ( 􏼁ij

� 􏽘
Gij�1

ϕijGi+(1/2),j

ψi+1,j − ψij

h2 − ϕijGi− (1/2),j

ψij − ψi− 1,j

h2􏼒 􏼓

+ 􏽘
Gij�1

ϕijGi,j+(1/2)

ψi,j+1 − ψij

h2 − ϕijGi,j− (1/2)

ψij − ψi,j− 1

h2􏼒 􏼓

� 􏽘
Gi+(1/2),j�1

ϕijDxψi+(1/2),j

h
− 􏽘

Gi−(1/2),j�1

ϕijDxψi− (1/2),j

h

+ 􏽘
Gi,j+(1/2)�1

ϕijDyψi,j+(1/2)

h
− 􏽘

Gi,j−(1/2)�1

ϕijDyψi,j− (1/2)

h

� 􏽘
Gi+(1/2),j�1

ϕijDxψi+(1/2),j

h
− 􏽘

Gi+(1/2),j�1

ϕi+1,jDxψi+(1/2),j

h

+ 􏽘
Gi,j+(1/2)�1

ϕijDyψi,j+(1/2)

h
− 􏽘

Gi,j+(1/2)�1

ϕi,j+1Dyψi,j+(1/2)

h

� − 􏽘
Gi+(1/2),j�1

Dxϕi+(1/2),jDxψi+(1/2),j − 􏽘
Gi,j+(1/2)�1

Dyϕi,j+(1/2)Dyψi,j+(1/2)

� − ∇dϕ,∇dψ( 􏼁e.

(14)

By using the equality in equation (13), the discrete mass
conservation is proved by

c
n+1

, 1􏼐 􏼑
h

� c
n
, 1( 􏼁h + Δt ∇d · GM

n∇dμ
n+1

􏼐 􏼑, 1􏼐 􏼑
h

� c
n
, 1( 􏼁h − Δt GM

n∇dμ
n+1

,∇d1􏼐 􏼑
e

� c
n
, 1( 􏼁h,

(15)

where 1 � (1, 1, · · · , 1).

2.3. Energy Dissipation. Next, we prove that the proposed
scheme is unconditionally gradient stable. Let us define a
discrete energy functional as
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E
h
(c) � (F(c), 1)h +

ϵ2

2
∇dc,∇dc( 􏼁e. (16)

It is sufficient to show that the energy dissipation
property Eh(cn+1)≤Eh(cn). First, we consider the property
of convexity. Because of the convexity of Fc(c) and Fe(c), we
have

F c
n+1

􏼐 􏼑 − F c
n

( 􏼁, 1􏼐 􏼑
h
≤ Fc
′ c

n+1
􏼐 􏼑 − Fe

′ c
n

( 􏼁, c
n+1

− c
n

􏼐 􏼑
h
.

(17)

For a detailed proof of the inequality in equation (17),
please refer to [22]. We now proceed to expand the right-
hand side of the inequality in equation (17). We assume that
M> 0, and then by summation by parts of equations (13)
and (9), we have

Fc
′ c

n+1
􏼐 􏼑 − Fe

′ c
n

( 􏼁, c
n+1

− c
n

􏼐 􏼑
h

� μn+1
+ ϵ2∇d · G∇dc

n+1
􏼐 􏼑, c

n+1
− c

n
􏼐 􏼑

h

� Δt μn+1
,∇d · GM

n∇dμ
n+1

􏼐 􏼑􏼐 􏼑
h

− ϵ2 ∇dc
n+1����

����
2
e

+ ϵ2

· ∇dc
n+1

,∇dc
n

􏼐 􏼑
e

� − Δt ∇dμ
n+1

, M
n∇dμ

n+1
􏼐 􏼑

e
− ϵ2 ∇dc

n+1����
����
2
e

+ ϵ2

· ∇dc
n+1

,∇dc
n

􏼐 􏼑
e

≤ − ϵ2 ∇dc
n+1����

����
2
e

+ ϵ2 ∇dc
n+1

,∇dc
n

􏼐 􏼑
e
.

(18)

Next, using the inequality in equation (18), we observe
that

E
h

c
n+1

􏼐 􏼑 − E
h

c
n

( 􏼁

� F c
n+1

􏼐 􏼑 − F c
n

( 􏼁, 1􏼐 􏼑
h

+
ϵ2

2
∇dc

n+1����
����
2
e

−
ϵ2

2
∇dc

n
����

����
2
e

≤ Fc
′ c

n+1
􏼐 􏼑 − Fe

′ c
n

( 􏼁, c
n+1

− c
n

􏼐 􏼑
h

+
ϵ2

2
∇dc

n+1����
����
2
e

−
ϵ2

2
∇dc

n
����

����
2
e

� −
ϵ2

2
∇dc

n+1����
����
2
e

+ ϵ2 ∇dc
n+1

,∇dc
n

􏼐 􏼑
e

−
ϵ2

2
∇dc

n
����

����
2
e

� −
ϵ2

2
∇dc

n+1
− ∇dc

n
����

����
2
e
≤ 0.

(19)

*erefore, we can conclude that the schemes of equa-
tions (8) and (9) are unconditionally gradient stable.

3. Numerical Experiments

First, we report a two-dimensional simulation to nu-
merically demonstrate the mass conservation and energy
dissipation. Next, we present the numerical results which
highlight different evolutions with constant and space-
dependent mobilities in a rectangular domain. Finally,

we report the numerical experiments on spinodal de-
composition in the spherical and cylindrical domains.

Prior to describing the numerical experiments, the
specific numerical method for the convex splitting in
equations (8) and (9) is introduced. Applying a possible
choice of the linear convex splitting as Fc(c) � (1/4)c2 and
Fe(c) � (1/4)c4 − (1/2)c3, we can rewrite equations (8) and
(9) as

cn+1
ij − cn

ij

Δt
� ∇d · GM

n∇dμ
n+1

􏼐 􏼑
ij
,

μn+1
ij �

1
2
c

n+1
ij − ϵ2∇d · G∇dc

n+1
􏼐 􏼑

ij
+ c

n
ij􏼐 􏼑

3
−
3
2

c
n
ij􏼐 􏼑

2
.

(20)

*e system is solved via the multigrid method [23]. For
details on the restriction and prolongation operators in the
complex domain with the multigrid method, please refer to
[20].

3.1. Mass Conservation and Energy Dissipation. To dem-
onstrate that the numerical scheme inherits the energy
decreasing property in a complex domain, we display the
evolution of the discrete total energy. *e variable mo-
bility is taken as M(c) � |c(1 − c)|. *e initial state is taken
to be

c(x, y, 0) � 0.5 + 0.01 · rand(x, y), (21)

in a domain Ω � (0, 1) × (0, 1). *e interface Γ is a disk
whose radius is 0.45 and center is located at (0.5, 0.5). Other
numerical parameters are taken as h � 1/256, ϵ � 0.002, and
Δt � 0.05 h.

Figure 4 shows the evolution of the scaled energy
functional and average concentration, which implies that
the total discrete energy is nonincreasing and the mass is
preserved. *e insets show the evolution of the con-
centration field at the times marked by closed circles.

3.2. Rectangular Domain with a Space-Dependent Mobility.
We show an example of the phase separation to compare
the effect of space-dependent mobility. Figure 5 shows
the temporal evolution of the spinodal decomposition
of a binary mixture with a constant mobility M(x, y) � 1
and space-dependent mobility M(x, y) � 0.25x2. In these
simulations, the initial condition is

c(x, y, 0) � 0.5 + 0.01 · rand(x, y), (22)

where rand(x, y) is a random number selected from a
random distribution between − 1 and 1. A 512 × 128 mesh
grid is used on the rectangular domain Ω � (0, 4) × (0, 1).
For the numerical parameters, Δt � 10− 5 and ϵ � 0.0025
are employed. For the phase separation, Figures 5(a) and
5(b) show the solutions at t � 0.01 and t � 0.5, respec-
tively, with constant mobility M � 1. Figure 5(c) shows
the different evolution after converting from constant
mobility M � 1 to space-dependent mobility M � 0.25x2

from t � 0.01. For the constant mobility case, uniform
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coarsening and domain growth are observed. For the
space-dependent mobility case, nonuniform coarsening
and domain growth are observed, i.e., smaller- and
larger-scale coarsening occurs for small and large values
of mobility, respectively.

3.3. Stability Test. To demonstrate the energy stability of the
proposed scheme, we calculate the numerical solution for
large time steps with the initial condition:

c(x, y, 0) � 0.5 + 0.01 · rand(x, y). (23)

*e domainΩin is a disk whose radius is 0.45 and center is
(0.5, 0.5). Variable mobility M(x, y, cn) � x2|cn(1 − cn)| is
employed in the computational domain Ω � (0, 1) × (0, 1).
Other parameters are taken as h � 1/256, ϵ � 0.002, andT � 8.

Figure 6 shows the evolution of the scaled discrete energy
for various time steps. All the curves are nonincreasing and
imply that the numerical solutions are energy stable. We
note that a time delay occurs if we use a large time step, as
shown in Figure 7.

3.4. Spherical Domain with a Space-Dependent Mobility.
We now report a numerical experiment in a spherical
domain. *e surface Γ is a sphere with radius 0.45 and

1

0.5

0
0 1 2 3 4

(a)

1

0.5

0
0 1 2 3 4

(b)

1

0.5

0
0 1 2 3 4

(c)

Figure 5: Phase coarsening and domain growth: (a) phase separation with constant mobility at an early stage t � 0.01 and snapshots at
t � 0.5 with (b) constant and (c) space-dependent mobilities.

0 1 2 3 4 5 6 7 8
Time (t)

Sc
al

ed
 en

er
gy

, ε
h (
cn

)/
εh

(c
0 )

0.2

0.4

0.6

0.8

1

Δt = 1/32
Δt = 1/16

Δt = 1/8
Δt = 1/4
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6 Mathematical Problems in Engineering



center (0.5, 0.5, 0.5) on the computational domain Ω �

(0, 1)3 and Ωin is the inside of Γ. *e initial condition is
taken to be

c(x, y, z, 0) � 0.5 + 0.01 · rand(x, y, z) (24)

on Ωin. *e mobility function is defined as
M � |c(1 − c)|(32d5 + 0.01), where d(x, y, z) ������������������������������

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2
􏽱

. For the computation,
we set h � 1/128, ϵ � 0.005, and Δt � h. Figure 8 shows the
isosurfaces of the evolution of c. For visibility, we plot the
longitude and latitude of the boundary of the domain Γ. *e
typical phase separation and coarsening procedure is ob-
servable; however, the growth rates of the inner and outer
regions are quite different.

Figure 9 shows the isosurfaces of internal domains with
various radii at t � 4. We can show that the phase domain is
getting thinner; however, the local average concentration is
almost completely preserved.

3.5. Application to Design the Scaffold. In this section, we
consider manufacturing a cylindrically shaped biomedical
scaffold for the application of space-dependent mobility.
*is is motivated by [13] which indicates that a proper
spatial gradient of concentration is required for effective
regeneration of tissues and organs. Figure 10(a) shows the
PCL/F127 cylindrical scaffold, which has a gradient on the
concentrations along the longitudinal direction. As shown in
Figures 5 and 9, the space-dependent mobility in the CH
equation gives the ability to control both the porosity and
pore size of the scaffold.

Adaptively changing the pore size is not a new concept in
the field of biomedical scaffold manufacturing [24–26]. For
example, we can consider the design in Figure 10(b) as the
PDLLA in [25]; however, they could not control the porosity
of the scaffold. Figure 10(b) is obtained by the isosurface of

ψ(x, y, z) � cosx siny + cosy sin z + cos z sinx − 0.6

+ 0.05(z − 4π),

(25)

within the region of x2 + y2 ≤ 3.24π2 and 0≤ z≤ 8π.
We now consider the design of a specific cylindrical

scaffold by applying the variable mobility M �

|c(1 − c)|Ms(x) with

M
s
(x) �

1
2

1 + tanh 2z −
5
2

􏼒 􏼓􏼒 􏼓, (26)

which is gradually increasing along the longitudinal direc-
tion. We examine the evolution of a random perturbation
with a small magnitude about mean composition

c(x, 0) � 0.5 + 0.01 · rand(x, y) (27)

on the domain Ω � (0, 1) × (0, 1) × (0, 2). For the simula-
tion parameters, we take h � 1/128, ϵ � 0.003, and Δt � h.

To highlight the variation of pore size in Figure 10(c), we
also present cross-sectional images at various heights in
Figure 11. In this figure, the red, green, and blue regions
indicate c � 1, 0.5, and 0, respectively.

While Figure 11 shows the dynamical variation of the
pore size, Figure 12 shows that the porosity of all cross
sections is near 50%. Consequently, both the porosity and
pore size can be simultaneously controlled by applying phase

(a) (b) (c) (d)

Figure 7: Numerical solutions ϕ(x, y, t) with different time step Δt at t � 8. (a) Δt � 1/32, (b) Δt � 1/16, (c) Δt � 1/8, and (d) Δt � 1/4.

(a) (b) (c)

Figure 8: Isosurfaces of c at various times. (a) t � 1, (b) t � 4, and (c) t � 16.
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(a) (b) (c)

Figure 9: Isosurfaces of c at t � 4 cut with different radii (a) r � 0.4, (b) 0.35, and (c) 0.3.
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Figure 10: (a) Cylindrical scaffold in [13], (b) a scaffold such as PDLLA, and (c) our design by applying phase separation with space-
dependent mobility. Reprinted from [13] with permission from Elsevier.

(a) (b) (c) (d)

Figure 11: Cross sections at the indicated heights. (a) z� 1.5 h, (b) z� 15.5 h, (c) z� 63.5 h, and (d) z� 127.5 h.
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Figure 12: Average concentration of c(·, z) with respect to the longitudinal direction z.
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separation with space-dependent mobility, as shown in
Figure 10(c).

4. Conclusions

We proposed a conservative and stable finite difference
method to solve the CH equation with variable mobility in
complex geometries. We proved that the numerical scheme
is conservative and energy dissipative for any time step size.
In addition, the CH equation with space-dependent mobility
was considered. *e two- and three-dimensional numerical
results show that local length scale in phase separations can
be controlled by using space-dependent mobilities. We
expect that space-dependent mobility can be applied to the
fabrication of scaffolds to control both local pore size scale
and porosity.
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