
Physica A 573 (2021) 125975

J
a

b

c

d

i

h
0

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

A practical adaptive gridmethod for the Allen–Cahn equation
Darae Jeong a, Yibao Li b, Yongho Choi c, Chaeyoung Lee d, Junxiang Yang d,
unseok Kim d,∗

Department of Mathematics, Kangwon National University, Gangwon-do 24341, Republic of Korea
School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
Department of Mathematics and Big Data, Daegu University, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

a r t i c l e i n f o

Article history:
Received 25 April 2019
Received in revised form 5 November 2019
Available online 30 March 2021

Keywords:
Allen–Cahn equation
Adaptive grid
Finite difference scheme
Motion by mean curvature

a b s t r a c t

We present a simple and practical adaptive finite difference method for the Allen–Cahn
(AC) equation in the two-dimensional space. We use a temporally adaptive narrow band
domain embedded in the uniform discrete rectangular domain. The narrow band domain
is defined as a neighboring region of the interface. We employ a recently developed
explicit hybrid numerical scheme for the AC equation. Therefore, the computational
algorithm on the narrow band discrete domain is simple and fast. We demonstrate the
high performance of the proposed adaptive method for the AC equation through various
computational experiments.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We consider a simple and practical adaptive finite difference method (FDM) for the following Allen–Cahn (AC) equation
n two-dimensional space:

∂φ(x, t)
∂t

=
φ(x, t) − φ3(x, t)

ϵ2
+∆φ(x, t), x ∈ Ω, (1)

n · ∇φ(x, t) = 0, x ∈ ∂Ω, (2)

where φ(x, t) is the order parameter at space x and time t in a bounded domain Ω , ϵ is a parameter, n is normal to ∂Ω .
Allen and Cahn introduced the AC equation to represent the motion of anti-phase boundaries in crystalline solids [1]. The
AC equation has been applied to many problems and applications such as image inpainting [2], mean curvature flows [3,4],
phase transitions [5], multimaterial topology optimization [6], image segmentation [7], and crystal growth [8].

Therefore, to understand and apply the AC dynamics we need the efficient and accurate numerical solutions of the
AC equation. Many numerical methods for the AC equations have been developed. For example, some of recent works
are as follows. A linearized second-order FDM was developed and discrete boundedness stability was established in [9].
The authors in [10] presented a linearized high-order compact FDM for the three-dimensional AC equation. The authors
in [11] proposed a reproducing kernel method using the FDM and the Quasi-Newton method to solve the AC equation.
A semi-analytical Fourier spectral method for the AC equation was presented in [12]. The fast FDM and the fast Fourier
spectral method were adopted to effectively solve the time fractional AC equation in [13]. In [14], the authors reduced the
time fractional AC equation to ordinary differential equation and solve the reduced equation by using an explicit power
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Fig. 1. Schematic of computational domain Ωh (dot) and the contour line by a given zero-level set of φ (red line).

eries. Efficient adaptive second-order in time approximations of the AC equation was proposed in [15]. A conforming
inite element method (FEM) for the numerical solution of the AC equation was developed in [16]. The authors in [17]
eveloped an operator-splitting unconditionally stable FEM for the two- and three-dimensional AC equation. In [18], the
uthors designed, analyzed, and showed an unconditionally energy stable second-order FEM for solving the AC equation.
Distinguishing features of the evolutionary dynamics of the AC equation are: (1) small portion for the interfacial

ransition region compared to the whole domain and (2) size of the transition layer decreases as time evolves. Therefore,
t is natural to compute the AC equation on an adaptive grid. In this article, by using a recently developed adaptive mesh
ethod [19] and a hybrid explicit scheme [20], we propose a practical adaptive grid method for the AC equation, which

s simple, fast, and accurate.
The contents of this article are as follows. In Section 2, we present the proposed numerical scheme and its solution

lgorithm for the AC equation. We present numerical results of motion by mean curvature in Section 3. Conclusions are
rawn in Section 5.

. Numerical method

We now describe an adaptive explicit hybrid FDM for Eq. (1) on the computational domain Ω = (a, b) × (c, d). First,
we define the discrete global domain Ωh = {(xi, yj)| xi = a + hi, yj = c + dj for 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny} according to an
uniform space grid size h = (b − a)/Nx = (d − c)/Ny, where Nx and Ny are positive integers (see Fig. 1).

Then, we let φn
ij denote the approximation of the solution φ(xi, yj, n∆t) of Eq. (1), where ∆t is the time step. As have

been mentioned, φ is the order parameter having the value between −1 and 1 as shown in Fig. 2(a). And we define the
interface of two phases as the zero-level set of φ. Using these property of φ, we define new computational domain.

For given γ > 0 and integer m > 0, we introduce the following time-dependent adaptive narrow band domain Ω̃n
h [19]

as

Ω̃n
h =

{
(xi+p, yj+q)

⏐⏐ |φn
ij | ≤ γ for ∀i, j and − m ≤ p, q ≤ m

}
.

Here, the narrow band domain Ω̃n
h is embedded in the discrete computational domain Ωh. Fig. 2(b) illustrates the narrow

band domain Ω̃n
h .

Now, we solve the governing Eq. (1) on the narrow band domain Ω̃n
h . First, we initialize φ0 on the computational

domain Ωh. Then, we define the narrow band domain Ω̃n
h with the given φn. By taking the following explicit hybrid

procedure [20], we solve φn+1 with the given φn. For all (xi, yj) ∈ Ω̃n
h , we compute a temporary value φ∗

ij :

φ∗

ij − φn
ij

∆t
= ∆hφ

n
ij =

φn
i+1,j + φn

i−1,j − 4φn
ij + φn

i,j+1 + φn
i,j−1

h2 .

After we obtain φ∗

ij , taking it as the initial conditions, i.e., ψij(0) = φ∗

ij , for the following ordinary differential equations
and solve them analytically:

dψij(t)
dt

=
ψij(t) − (ψij(t))3

ϵ2

nd then we get φn+1
= ψ (∆t) = φ∗/

√
(φ∗)2 + [1 − (φ∗)2]e−2∆t/ϵ2 .
ij ij ij ij ij

2
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Fig. 2. Schematic of (a) φ and (b) narrow band domain Ω̃n
h (dot) and the contour line by a given zero-level set of φ (red line).

3. Numerical experiments

In this study, we implement several numerical experiments. Here, we use the notation ϵl = lh/[2
√
2 tanh−1(0.9)] for

the interfacial parameter ϵ that means approximately lh transition layer across the interface.

3.1. Evolution of a circular interface

Because there are only limited closed-form solutions for the AC-type equation [21], as a test problem for the accuracy
of the numerical algorithm, we consider the temporal evolution of a circle whose radius is R(t) at time t under moving by
mean curvature. As ϵ approaches zero, the AC equation is known that the zero-level contour of φ evolves to the normal
irection velocity, i.e., dR(t)/dt = −1/R(t) [1]. Therefore, if the initial radius of a circle is R0, then the radius follows the
nalytical movement as R(t) =

√
R2
0 − 2t . With the property of the solution for the AC equation, we verify accuracy of

the numerical solution.
We set the initial condition as φ(x, y, 0) = tanh[(R0 −

√
x2 + y2)/(

√
2ϵ)] on Ω = (−50, 50) × (−50, 50). Here, the

nitial radius is given by R0 = 35 and the other numerical parameters are used as ϵ = ϵ8, Nx = Ny = 400, h = 0.25,
t = 0.2h2. Fig. 3(a) and (b) show the temporal evolutions of zero-level contour of φ and radius R(t), respectively.
specially, in Fig. 3(b), we can observe that the numerical solutions are in good agreement with the analytic solutions.
lso, Fig. 3(c)–(e) represent the discrete narrow band domains Ω̃n

h used at t = 0, 350, and 600, respectively.

.2. Evolution of a star-shape interface

Next, let us consider the evolution of a star-shaped interface under the motion by mean curvature. The initial condition
n Ω = (−50, 50) × (−50, 50) is given as

φ(x, y, 0) = tanh
30 + 10 cos(9θ ) −

√
x2 + y2

√ ,

2ϵ8

3
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Fig. 3. Temporal evolutions of (a) zero-level contour of φ and (b) radius R(t). Discrete narrow band domains Ω̃n
h used at (c) t = 0, (d) t = 350, and

e) t = 600.

here θ is the angle made by the vector (x, y) and the x-axis. Fig. 4(a) and (b) show the temporal evolutions of the
interface from t = 0 to t = 50 and from t = 60 to t = 470, respectively. We use the numerical parameters as ϵ = ϵ8,

= 0.25, and ∆t = 0.2h2. Depending on the sign of the curvature of the interface, the tips and the gaps of the star move
nward and outward. Once it becomes circular shape, the interface shrinks and then eventually disappears. Fig. 4(c) and
d) show the narrow band domains Ω̃n

h with interfaces at t = 10 and t = 470, respectively.

.3. Change of area enclosed by a closed-curve

According to the mathematical theory [22], the area enclosed by a closed-curve decreases at the constant rate, −2π .
n this test, we investigate the change of area by a maze and circle. Also, for comparison, we assume that the area of the
aze and circle is same. Here, we use the initial radius r = 38.7833 of the circle, of which area is equal to the area of

he maze as shown in Fig. 5(a) at t = 0.
Fig. 5(a) and (c) show the temporal evolutions of the curves of the maze and circle, respectively. Here, we used ϵ4,

= 0.25, ∆t = 0.2h2 on the computational domain Ω = (−50, 50)× (−50, 50). Fig. 5(b) and (d) represent the temporal
volutions of the narrow band domains corresponding to (a) and (b), respectively.
In Fig. 6(a), we can observe the temporal evolutions of the enclosed areas of the maze and the circle. As shown in

ig. 6(a), it can be seen that both the areas are almost identical under the motion by mean curvature. In Fig. 6(b) and (c),
e plot together curves of the maze and the circle at t = 0 and t = 570∆t , respectively.

.4. Avoidance principle

Next, we consider avoidance principle [23]: If any two smooth solutions of the mean curvature flow which are disjoint,
hen they stay disjoint.

By examining the avoidance principle, we proceed with the two disjoint curves. Here, we use h = 0.3906, ∆t =

.2h2, ϵ = ϵ4 on the computational domain Ω = (−50, 50) × (−50, 50). Fig. 7(a) shows the temporal evolutions for
wo originally disjoint curves at t = 200∆t, 4000∆t, 10000∆t, 11100∆t . Here, the solid and dashed lines are used to
dentify those two disjoint curves. Fig. 7(b) represents its corresponding time-dependent narrow band domain of Fig. 7(a).
e can see that the numerical results show a good agreement with the avoidance principle [23].
4
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Fig. 4. Temporal evolution of the interface (a) from t = 0 to t = 50 and (b) from t = 60 to t = 470. Narrow band domains with interfaces at (c)
= 10 and (d) at t = 470.

.5. Huisken’s principle [24]

The following one is by Huisken [24]: If the two convex curves γ1 and γ2 evolve according to the curvature flow in
he plane, and γ1 contains the closed curve γ2, then the curve is enclosed by γ1 for all t ∈ [0, ω) for some ω > 0.

The numerical parameters are the same with those above. Fig. 8(a) shows the temporal evolution of two curves at
= 150∆t, 3000∆t, 7500∆t, 15000∆t . Fig. 8(b) presents the corresponding results on narrow band domain. The solid
ine indicates the outer curve γ1 and dashed line indicates the inner curve γ2. We can find that γ2 always evolves inside
1 as time proceeds.

.6. Grayson’s convexity theorem

In this section, we confirm the Grayson’s convexity theorem [25], that a non-convex embedded curve converges to a
ound circle, using a numerical test. We start the numerical simulation with a start-shaped initial condition and the other
arameters are used as the same value in the previous case. Fig. 9(a) shows the temporal evolution of the curve (solid
ine) with curvature (arrow) at t = 90∆t, 900∆t, 2700∆t, 9000∆t . Here, the discrete curvature at Xn

l along the contour
s defined as

1
∆sl+1/2

(
Xn

l+1 − Xn
l

∆sl+1
−

Xn
l − Xn

l−1

∆sl

)
, (3)

where l = 1, . . . ,M is the index of a discrete point, Xn
l = (Xn

l , Y
n
l ), on the contour and we set Xn

0 = Xn
M and Xn

M+1 = Xn
1.

Also, we use the notion ∆sl =
√
(Xl − Xl−1)2 + (Yl − Yl−1)2 and ∆sl+1/2 = (∆sl + ∆sl+1)/2. As shown in Fig. 9(a), the

urvature along the contour contains the positive and negative values at t = 90∆t , and then the values of curvature
ecome negative at later times. Fig. 9(b) are the corresponding narrow band domains.
5
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Fig. 5. Temporal evolutions of the curves of (a) maze and (c) circle at t = 0, 100∆t , 300∆t , and 570∆t . Narrow band domains of (b) maze and (d)
circle used at the corresponding time.

Fig. 6. (a) Temporal evolution of the enclosed areas of the maze and the circle. Plots of the curves of the maze and the circle at (b) t = 0 and (c)
t = 570∆t .
6
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Fig. 7. (a) Temporal evolutions of two disjoint curves. (b) Two curves on its corresponding narrow band domain.

Fig. 8. (a) Temporal evolutions of γ1 and γ2 . (b) Two curves on its corresponding narrow band domain.

Now, in order to confirm the formation of circle as time proceeds, we compute the temporal evolution of L2/(Aπ ),
here L and A denote the total length and area of the curve, respectively. Here, the discrete forms of L and A are defined
s

L(X) =

M∑
l=1

∆sl, A(X) =
1
2

⏐⏐⏐⏐⏐
M∑
l

(XlYl+1 − YlXl+1)

⏐⏐⏐⏐⏐ .
In the case of a circle, we have L2/(Aπ ) = 4.

Fig. 10 shows the temporal evolution of L2/(Aπ ) and we can find that the numerical result (thin solid line with circle
arkers) converges to 4 (thick solid line) as time proceeds. The embedded figures indicate the curvature distribution
long the interface at the corresponding times.

.7. Comparison with multigrid method

To demonstrate the efficiency of the proposed method, we compare the CPU times calculated by the proposed adaptive
ethod and the multigrid method [26]. The initial condition is chosen as φ(x, y, 0) = tanh

[
(30 −

√
x2 + y2)/(

√
2ϵ)

]
on (−50, 50) × (−50, 50) and ϵ = ϵ20 is taken. We use h = 100/256,∆t = 0.2h2 for the proposed method and
∆t = 0.2h2, 0.8h2, 3.2h2, 12.8h2 for the multigrid method with a tolerance 10−8.
7
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Fig. 9. (a) Temporal evolution of star-shaped curve and (b) its corresponding time-dependent narrow band domain.

Fig. 10. Temporal evolution of L2/(Aπ ). The embedded figures indicate the curvature distribution along the interface at the corresponding times.

Fig. 11. Evolution of radius for proposed method and multigrid method.
8
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Table 1
Ratios of CPU times between the proposed method and the multigrid
method. Here, different case means the time step used in the multigrid
method.
Case ∆t 4∆t 16∆t 64∆t

Ratio 23.1274 8.3240 2.8528 0.6743

Fig. 12. (Left) There are four levels, and the effective fine grid resolution is 1024 × 2048. This figure displays the fingering phenomenon at t = 7800.
Right) A close-up view of the mesh refinement around the front.
ource: Reprinted from Antepara et al. [27] with permission from Springer.

Fig. 11 shows the comparison results between the proposed method and the multigrid method up to time t = 244.14.
We can find that the numerical result of evolution of radius for the proposed method agrees well with exact solution. The
numerical results with small time steps for the multigrid method show a good agreement with exact solution. However,
the results with large time steps show inaccurate results.

Table 1 shows the ratios of CPU time for the computation up to time t = 244.14. The ratio is defined as the quotient
between the CPU times for the multigrid method and the proposed method. As we can see, the multigrid method obviously
uses more CPU time than the proposed method and a larger time step for the multigrid method results in a smaller ratio
with a less accurate result.

4. Discussion

In this paper, we focused on the practical numerical method to solve the AC equation. This method has merits in simple
approach and fast calculation on the refined grid. In this section, we discuss possible applications of the proposed method
for the AC equation. As previously mentioned, the AC equation has been applied to many problems and applications such
as image inpainting [2], mean curvature flows [3,4], phase transitions [5], multimaterial topology optimization [6], image
segmentation [7], and crystal growth [8]. Among them, we introduce a couple of examples.

• Thin film : In order to simulate the thin capillary driven films, the following fourth-order nonlinear equation can be
used

ht + (h2
− h3)y = −ϵ3∇ · (h3

∇∆h). (4)

Here, h(x, y, t) is the variable for thickness of thin liquid layer on an inclined surface, which is driven by thermally
created surface tension gradients and influenced by gravity. By splitting Eq. (4) into a system, we obtain

ht + fy(h) = ∇ · (M(h)∇µ) , (5)

µ = −ϵ3∆h, (6)
9
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Fig. 13. Numerical results of the wobbling bubble test on the adaptive grid.
Source: Reprinted from Antepara et al. [31] with permission from Elsevier.

where f (h) = h2
− h3 and M(h) = h3. In Ref. [27,28], Eqs. (5) and (6) are solved by an adaptive finite difference

method with rectangular grid patches dynamically following the front motion.

Fig. 12 shows the main numerical results in Ref. [27]. In Fig. 12, the enlarged view (right) illustrates the four grid
levels around the front which is used by the adaptive mesh refinement.

• Multiphase fluid : Two immiscible incompressible fluids with surface tension force are described by the Navier–Stokes
equation [29] as

∂(ρu)
∂t

+ u · ∇u = −∇p +
1
Re
∆u + Fs(φ),

∇ · u = 0,

where u is the fluid velocity, p is the pressure, Re is the Reynolds number, and Fs is the surface tension of the
interface. The interfacial force Fs(φ) is given as

Fs = −
3
√
2ϵ

4We
∇ ·

(
∇φ

|∇φ|

)
|∇φ|∇φ,

where We is the Weber number [30]. The governing equation of the order parameter φ is given by the following
phase-field equation:

∂φ

∂t
+ ∇ · (φu) =

1
Pe

(
−F ′(φ) + ϵ2∆φ

)
+ β(t)

√
F (φ),

where Pe is the Peclet number, F (φ) = 0.25(φ2
− 1)2, ϵ is a positive constant, and β(t) is a non-constant Lagrange

multiplier for the mass conservation. This equation can be used to simulate the wobbling bubble. As an example,
Fig. 13 shows the results of wobbling bubble test on the adaptive refinement mesh around the bubble. See Ref. [31]
for more detailed explanation of the numerical test.

• Tumor growth : First, we denote φV , φD, and φH by the volume fraction of viable tumor, dead tumor, and healthy
tissue, respectively [32,33], which satisfy φH + φV + φD = 1. With the total tumor volume fraction φT = φV + φD,
we simplify the mathematical model as follows.

∂φT

∂t
= M∇(φT∇µ) + ST − ∇ · (uSφT ),

µ = f ′(φT ) − ϵ2∇2φT ,

where M > 0 is the mobility constant related to phase separation between φT and φH . ST is the net source of φT .
See Ref. [33] for further explanation of the other parameters. Furthermore, the dynamical equation for φD is used
as

∂φD

∂t
= M∇ · (φD∇µ) + SD − ∇ · (uSφD),

where SD is the net source of φD. Therefore, the viable tumor tissue volume fraction is evaluated by φV = φT − φD.
Fig. 14 shows the temporal evolution of the contours φ = 0.5 on the adaptive mesh with three levels of refinement.
V

10
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Fig. 14. Evolution of the contours φT = 0.5 with the adaptive grid.
Source: Reprinted from Wise et al. [33] with permission from Elsevier.

Here, the bottom right figure shows the full viable cell region which the white and black color corresponds to φV ≈ 1
and φV ≈ 0. As shown in Fig. 14, the viable cells are located between the inner and outer contours. Furthermore,
the contour of φV = 0.5 is increasing as the time goes on.

The above examples are obtained with conventional adaptive mesh techniques. However, it is not easy to implement
ecause the program code is very heavy and complex. Therefor, our proposed method can be useful in implementing the
daptive code.

. Conclusions

In this paper, we presented a simple and practical explicit adaptive FDM for the AC equation in two-dimensional space.
e used a time-dependent adaptive narrow band domain embedded in the uniform discrete rectangular domain. We
emonstrated the high performance of the proposed adaptive method for the AC equation through various computational
xperiments. The numerical results were consistent with theoretical results. In particular, the comparison result with a
ultigrid method for an implicit scheme showed the superior performance of the proposed method in CPU time over the
ultigrid method under the condition of equivalent accuracy. As a future research work, we plan to simulate two-phase

luid flow [34] using the proposed explicit adaptive algorithm.
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